Skip to main content
Log in

Do coinage metal anions interact with substituted benzene derivatives?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nature of the anion–π interaction has been investigated by carrying out ab initio calculations of the complexes of coinage metal anions (Au, Ag, and Cu) with different kinds of π-systems. The binding energies indicate that gold anion has the highest and copper anion has the lowest affinity for interactions with π-systems. Different aspects of the anion–π interaction in these systems have been investigated, including charge-transfer effects (using the Merz–Kollman method), “atoms-in-molecules” (AIM) topological parameters, and interaction energies (using energy decomposition analysis, EDA). Our results indicated that, for most M···π interactions, the electrostatic term provides the dominant contribution, whereas polarization, charge transfer, and dispersion effects contribute less than 25 % of the interaction. We believe that the present results should lead to a greater understanding of the basis for anion–π interactions of coinage metal anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 42:1210–1250

    Article  CAS  Google Scholar 

  2. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    Google Scholar 

  3. Dougherty DA (1996) Cation–pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271:163–168

    Google Scholar 

  4. Kim KS, Tarakeshwar P, Lee JY (2000) Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100:4145–4185

    Article  CAS  Google Scholar 

  5. Lee EC, Kim D, Jureeka P, Tarakeshwar P, Hobza P, Kim KS (2007) Understanding of assembly phenomena by aromatic–aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111:3446–3457

    Google Scholar 

  6. Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4 +, and NMe4 +] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893–8903

    Google Scholar 

  7. Eerny J, Hobza P (2007) Non-covalent interactions in biomacromolecules. Phys Chem Chem Phys 2007(9):5291–5303

    Google Scholar 

  8. Lucas X, Quinonero D, Frontera A, Deya PM (2009) Counterintuitive substituent effect of the ethynyl group in ion–π interactions. J Phys Chem A 113:10367–10375

    Google Scholar 

  9. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    Google Scholar 

  10. Demeshko S, Dechert S, Meyer F (2004) Anion–π interactions in a carousel copper(II)–triazine complex. J Am Chem Soc 126:4508–4509

    Google Scholar 

  11. Schottel BL, Bacsa J, Dunbar KR (2005) Anion dependence of Ag(I) reactions with 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz): isolation of the molecular propeller compound [Ag2(bptz)3][AsF6]2. Chem Commun 1:46–47

    Article  Google Scholar 

  12. Rosokha YS, Lindeman SV, Rosokha SV, Kochi JK (2004) Halide recognition through diagnostic “anion–π” interactions: molecular complexes of Cl, Br, and I with olefinic and aromatic π receptors. Angew Chem Int Ed 43:4650–4652

    Google Scholar 

  13. de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J (2004) An aromatic anion receptor: anion–π interactions do exist. Angew Chem Int Ed 43:5815–5817

    Google Scholar 

  14. Frontera A, Saczewski F, Gdaniec M, Dziemidowicz-Borys E, Kurland A, Deya M, Quinonero D, Garau C (2005) Anion–π interactions in cyanuric acids: a combined crystallographic and computational study. Chem Eur J 11:6560–6566

    Google Scholar 

  15. Berryman OB, Bryantsev VS, Stay DP, Johnson DW, Hay BP (2007) Structural criteria for the design of anion receptors: the interaction of halides with electron-deficient arenes. J Am Chem Soc 129:48–58

    Article  CAS  Google Scholar 

  16. Mascal M (2006) Precedent and theory unite in the hypothesis of a highly selective fluoride receptor. Angew Chem Int Ed 45:2890–2893

    Google Scholar 

  17. Mascal M, Yakovlev I, Nikitin EB, Fettinger JC (2007) Fluoride-selective host based on anion–π interactions, ion pairing, and hydrogen bonding: synthesis and fluoride-ion sandwich complex. Angew Chem Int Ed 46:8782–8784

    Google Scholar 

  18. Gorteau V, Bollot G, Mareda J, Perez-Velasco A, Matile S (2006) Rigid oligonaphthalenediimide rods as transmembrane anion–π slides. J Am Chem Soc 128:14788–14789

    Google Scholar 

  19. Gorteau V, Bollot G, Mareda J, Matile S (2007) Rigid-rod anion–pi slides for multiion hopping across lipid bilayers. Org Biomol Chem 5:3000–3012

    Google Scholar 

  20. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2004) Cation–π versus anion–π interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427

    Google Scholar 

  21. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2004) Cation–π versus anion–π interactions: a comparative ab initio study based on energetic, electron charge density and aromatic features. Chem Phys Lett 392:85–89

    Google Scholar 

  22. Estarellas C, Frontera A, Quinonero D, Alkorta I, Deya PM, Elguero J (2009) Energetic vs synergetic stability: a theoretical study. J Phys Chem A 113:3266–3273

    Article  CAS  Google Scholar 

  23. Quinonero D, Garau C, Frontera A, Ballester P, Costa A, Deya PM (2005) Structure and binding energy of anion–π and cation–π complexes: a comparison of MP2, RI-MP2, DFT, and DF-DFT methods. J Phys Chem A 109(4632):4637

    Google Scholar 

  24. Garau C, Frontera A, Quinonero D, Russo N, Deya PM (2011) RI-MP2 and MPWB1K study of π–anion–π′ complexes: MPWB1K performance and some additivity aspects. J Chem Theory Comput 7:3012–3018

    Google Scholar 

  25. Hiraoka K, Mizuse S, Yamabe S (1987) High-symmetric structure of the gas-phase cluster ions X...C6F6 (X = Cl, Br, and I). J Phys Chem 91:5294–5297

    Google Scholar 

  26. QuiEonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deya PM (2002) Anion–π interactions: do they exist? Angew Chem Int Ed 41:3389–3392

    Google Scholar 

  27. Alkorta I, Rozas I, Elguero J (2002) Interaction of anions with perfluoro aromatic compounds. J Am Chem Soc 124:8593–8598

    Article  CAS  Google Scholar 

  28. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2003) A topological analysis of the electron density in anion–π interactions. Chem Phys Chem 4:1344–1348

    Google Scholar 

  29. Escudero D, Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) Induced-polarization energy map: a helpful tool for predicting geometric features of anion–π complexes. J Chem Theory Comput 36:2098–2107

    Google Scholar 

  30. Kuhnle A, Linderoth TR, Hammer B, Besenbacher F (2002) Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunneling microscopy. Nature 415:891–893

    Article  CAS  Google Scholar 

  31. Kryachko ES, Remacle F (2005) Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N–H···Au hydrogen bonding. Nano Lett 5:735–739

    Google Scholar 

  32. Kryachko ES, Remacle F (2005) Complexes of DNA bases and Watson–Crick base pairs with small neutral gold clusters. J Phys Chem B 109:22746–22757

    Google Scholar 

  33. Wang J (2003) Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 500:247–257

    Article  CAS  Google Scholar 

  34. Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126

    Article  CAS  Google Scholar 

  35. Kumar A, Mishra PC, Suhai S (2006) Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC–Au n and AT–Au n (n = 4, 8) complexes. J Phys Chem A 110:7719–7727

    Google Scholar 

  36. Sharma P, Singh H, Sharma S, Singh H (2007) Binding of gold nanoclusters with size-expanded DNA bases: a computational study of structural and electronic properties. J Chem Theory Comput 3:2301–2311

    Article  CAS  Google Scholar 

  37. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  38. Polfer NC, Oomens J, Morre DT, von Helden G, Meijer G, Dunbar RC (2006) Infrared spectroscopy of phenylalanine Ag(I) and Zn(II) complexes in the gas phase. J Am Chem Soc 128:517–525

    Article  CAS  Google Scholar 

  39. Dunbar RC, Moore DT, Oomens J (2006) IR-spectroscopic characterization of acetophenone complexes with Fe+, Co+, and Ni+ using free-electron-laser IRMPD. J Phys Chem A 110:8316–8326

    Article  CAS  Google Scholar 

  40. Moore DT, Oomens J, Eyler JR, von Helden G, Meijer G, Dunbar RC (2005) Infrared spectroscopy of gas-phase Cr+ coordination complexes: determination of binding sites and electronic states. J Am Chem Soc 127:7243–7254

    Article  CAS  Google Scholar 

  41. Yi HB, Diefenbach M, Choi YC, Lee EC, Lee HM, Hong BH, Kim KS (2006) Interactions of neutral and cationic transition metals with the redox system of hydroquinone and quinone: theoretical characterization of the binding topologies, and implications for the formation of nanomaterials. Chem Eur J 12:4885–4892

    Article  CAS  Google Scholar 

  42. Pandey R, Rao BK, Jena P, Blanco MA (2001) Electronic structure and properties of transition metal–benzene complexes. J Am Chem Soc 123:3799–3808

    Google Scholar 

  43. Roszak S, Balasubramanian K (1995) Theoretical study of the interaction of benzene with platinum atom and cation. Chem Phys Lett 234:101–106

    Article  CAS  Google Scholar 

  44. Dargel TK, Hertwig RH, Koch W (1999) How do coinage metal ions bind to benzene? Mol Phys 96:583–592

    Article  CAS  Google Scholar 

  45. Sayyed FB, Suresh CH (2011) Quantitative assessment of substituent effects on cation–π interactions using molecular electrostatic potential topography. J Phys Chem A 115:9300–9307

    Google Scholar 

  46. Yi HB, Lee HM, KimK S (2009) Interaction of benzene with transition metal cations: Theoretical study of structures, energies, and IR spectra. J Chem Theory Comput 5:1709–1717

    Article  CAS  Google Scholar 

  47. Garau C, Quinonero FA, Escudero D, Ballester P, Costa A, Deya PM (2002) Ab initio calculations on zinc porphyrins complexed to amines: geometrical details and NMR chemical shifts. J Mol Struct (Theochem) 531:381–386

    Google Scholar 

  48. Ali ME, Oppeneer PM (2011) Influence of noncovalent cation/anion–π interactions on the magnetic exchange phenomenon. J Phys Chem Lett 2:939–943

    Google Scholar 

  49. Ma JC, Dougherty DA (1997) The cation–π interaction. Chem Rev 97:1303–1324

    Google Scholar 

  50. Yu G, Huang XR, Chen W, Sun CC (2011) Alkali metal atom–aromatic ring: a novel interaction mode realizes large first hyperpolarizabilities of M@AR (M = Li, Na, and K, AR = pyrrole, indole, thiophene, and benzene). J Comput Chem 32:2005–2011

    Google Scholar 

  51. Granatier J, Lazar P, Otyepka M, Hobza P (2011) The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD(T) calculations to plane-wave DFT calculations. J Chem Theory Comput 7:3743–3755

    Article  CAS  Google Scholar 

  52. Neese F (2012) ORCA, v.2.9.1. University of Bonn, Bonn

  53. Pantazis DA, Chen XY, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput 4:908–919

    Article  CAS  Google Scholar 

  54. Pantazis DA, Neese F (2009) All-electron scalar relativistic basis sets for the lanthanides. J Chem Theory Comput 5:2229–2238

    Article  CAS  Google Scholar 

  55. Peterson KA, Puzzarini C (2005) Interaction of anions with perfluoro aromatic compounds systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  56. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data. Chem Phys 311:227–244

    Google Scholar 

  57. Bernardi F, Boys SF (1970) Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol Phys 19:553–566

    Google Scholar 

  58. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 105:11024–11031

    Google Scholar 

  59. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  60. Sigfridson E, Ryde U (1998) Comparison of methods for deriving atomic charges from the electrostatic potential and moments. J Comput Chem 19:377–395

    Article  Google Scholar 

  61. Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86

    Google Scholar 

  62. te Velde G, Bickelhaupt FM, Baerends EJ, van Gisbergen SJA, Fonseca Guerra C, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Article  Google Scholar 

  63. Scientific Computing & Modelling (SCM) NV (2010) ADF. http://www.scm.com

  64. Morokuma K (1971) Molecular orbital studies of hydrogen bonds. III. C–O…H–O hydrogen bond in H2CO…H2O and H2CO…2H2O. Chem Phys 55:1236–1245

    Google Scholar 

  65. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree–Fock approximation. Int J Quantum Chem 10:325–340

    Google Scholar 

  66. Ziegler T, Rauk A (1979) Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as σ donors and π acceptors. A theoretical study by the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1755–1759

    Google Scholar 

  67. Ziegler T, Rauk A (1979) A theoretical study of the ethylene–metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1558–1565

    Google Scholar 

  68. Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theor Chim Acta 46:1–10

    Google Scholar 

  69. Chang C, Pelissier M, Durand P (1986) Regular two-component. Pauli-like effective Hamiltonians in Dirac theory. Phys Scr 34:394–404

    Google Scholar 

  70. Heully JL, Lindgren I, Lindroth E, Lundquist S, Snijders AJG (1993) Relativistic regular two component Hamiltonians. J Chem Phys 99:4597–4610

    Article  Google Scholar 

  71. van Lenthe E, Baerends EJ, Snijders JG (1996) The zero order regular approximation for relativistic effects: the effect of spin–orbit coupling in closed shell molecules. J Chem Phys 105:6505–6516

    Google Scholar 

  72. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  73. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford, pp 1–438

    Google Scholar 

  74. Bader RFW (2002) AIM2000 program package, ver. 2.0. McMaster University, Hamilton

    Google Scholar 

  75. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Google Scholar 

  76. Estarellas C, Frontera A, Quinonero D, Deya PM (2008) Theoretical and crystallographic study of the dual σ/π anion binding affinity of quinolizinylium cation. J Chem Theory Comput 4:1981–1989

    Article  CAS  Google Scholar 

  77. Wavefunction, Inc. (2004) SPARTAN 06V102. Wavefunction, Irvine, CA

  78. Charton M (1981) An examination of linear salvation energy relationships. Prog Phys Org Chem 13:120–251

    Google Scholar 

  79. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  80. Hammett LP (1935) Some relations between reaction rates and equilibrium constants. Chem Rev 17:125–136

    Google Scholar 

  81. Hammett LP (1940) Physical organic chemistry. McGraw-Hill, New York, pp 136–149

    Google Scholar 

  82. Hohenstein EG, Sherrill CD (2009) Effects of heteroatoms on aromatic π–π interactions: benzene–pyridine and pyridine dimer. J Phy Chem A 113:878–886

    Google Scholar 

  83. Ringer AL, Sherrill CD (2009) Substituent effects in sandwich configurations of multiply substituted benzene dimers are not solely governed by electrostatic control. J Am Chem Soc 131:4574–4575

    Article  CAS  Google Scholar 

  84. Sinnokrot MO, Sherrill CD (2003) Unexpected substituent effects in face-to-face π-stacking interactions. J Phys Chem A 107:8377–8379

    Article  CAS  Google Scholar 

  85. Sinnokrot MO, Sherrill CD (2006) High-accuracy quantum mechanical studies of π–π interactions in benzene dimers. J Phys Chem A 110:10656–10668

    Article  CAS  Google Scholar 

  86. Ringer AL, Sinnokrot MO, Lively RP, Sherrill CD (2006) The effect of multiple substituents on sandwich and T-shaped π–π interactions. Chem Eur J 12:3821–3828

    Article  CAS  Google Scholar 

  87. Arnstein SA, Sherrill CD (2008) Substituent effects in parallel-displaced π–π interactions. Phys Chem Chem Phys 10:2646–2655

    Google Scholar 

  88. Lewis M, Bagwill C, Hardebeck LKE, Wireduaah S (2012) The use of Hammett constants to understand the non-covalent binding of aromatics. Comput Struct Biotechnol J 1:e201204004

    Google Scholar 

  89. Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  90. Wheeler SE, Houk KN (2009) Substituent effects in cation/π interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. J Am Chem Soc 131:3126–3127

    Article  CAS  Google Scholar 

  91. Koch U, Popelier P (1995) Characterization of C–H…O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Google Scholar 

  92. Popelier PLA (2000) Atoms in molecules. An introduction. Pearson, London, pp 143–198

  93. Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86

    Google Scholar 

  94. Alkorta I, Rozas I, Elguero J (1997) An attractive interaction between the π-cloud of C6F6 and electron-donor atoms. J Org Chem 62:4687–4691

    Article  CAS  Google Scholar 

  95. Alkorta I, Rozas I, Elguero J (2000) Effects of fluorine substitution on hydrogen bond interactions. J Fluor Chem 101:233–238

    Article  CAS  Google Scholar 

  96. Mascal M, Armstrong A, Bartberger MD (2002) Anion–aromatic bonding: a case for anion recognition by π-acidic rings. J Am Chem Soc 124:6274–6276

    Google Scholar 

  97. Kim D, Tarakeshwar P, Kim KS (2004) Theoretical investigations of anion–π interactions: the role of anions and the nature of π systems. J Phys Chem A 108:1250–1258

    Google Scholar 

  98. Quinonero D, Garau C, Frontera A, Ballester P, Costa A, Deya PM (2002) Counterintuitive interaction of anions with benzene derivatives. Chem Phys Lett 359:486–492

    Article  CAS  Google Scholar 

  99. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2004) Cation–π vs anion–π interactions: a complete π-orbital analysis. Chem Phys Lett 399:220–225

    Google Scholar 

  100. Wheeler SE, Houk KN (2008) Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. J Am Chem Soc 130:10854–10855

    Google Scholar 

Download references

Acknowledgments

Support from the Chemistry and Chemical Engineering Research Center of Iran is gratefully acknowledged. We also appreciate our access to the computing resources of the Department of Chemistry University of Basel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Jamshidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliakbar Tehrani, Z., Jamshidi, Z. & Farhangian, H. Do coinage metal anions interact with substituted benzene derivatives?. J Mol Model 19, 4763–4772 (2013). https://doi.org/10.1007/s00894-013-1965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1965-y

Keywords

Navigation