Skip to main content
Log in

Investigation into the metallophilic interaction in coinage-metal halides: an ab initio study of CMX (CM = Cu and Ag, X = F − I)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Investigation of the metallophilic interactions of the title coinage-metal halide series, CMX (CM = Ag and Cu, X = F − I), and their cationic and anionic systems, were performed at CCSD(T) theoretical level with extended basis sets. Natural bond orbital analysis shows that the interactions come mainly from the overlap of the sp hybrid on the halogen and the spd hybrid on the coinage-metal atom. Electron density deformation analysis demonstrates a pronounced electron accumulation in the interaction region between the heavier X and the coinage-metal atoms, and suggests a covalent character of the interaction. Positive Laplacian values and negative total energy densities at bond critical points (BCPs) show the “intermediate” character of the interactions. Reduced density gradient analysis visualizes the interaction; a linear relationship between energy densities and eigenvalues can be found at BCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fayet P, Granzer F, Hegenbart G, Moisar E, Pischel B, Woste LZ (1986) Phys D At Mol Clust 3:299

    Article  CAS  Google Scholar 

  2. Neipp C, Pascual C, Belendez A (2002) J Phys D Appl Phys 35:957

    Article  CAS  Google Scholar 

  3. Kang SK, Yoon SK, Kim Y (2001) Org Lett 3:2697

    Article  CAS  Google Scholar 

  4. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  5. Schwarz H (2003) Angew Chem Int Ed 42:4442

    Article  CAS  Google Scholar 

  6. Wang LS (2010) Phys Chem Chem Phys 12:8694

    Article  CAS  Google Scholar 

  7. Li X, Cao X (2008) Phys Rev A 77:022508

    Article  Google Scholar 

  8. Li X (2012) J Chem Phys 137:124301

    Article  Google Scholar 

  9. Rabilloud F (2012) J Phys Chem A 116:3474

    Article  CAS  Google Scholar 

  10. Rabilloud F (2012) J Comput Chem 33:2083

    Article  CAS  Google Scholar 

  11. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  12. Liu HT, Xiong XG, Dau PD, Wang YL, Li J, Wang LS (2011) Chem Sci 2:2101

    Article  CAS  Google Scholar 

  13. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  14. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  15. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153

    Article  CAS  Google Scholar 

  16. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

  17. Bader RFW (1990) Atoms in molecules a quantum theory. Clarendon, Oxford

    Google Scholar 

  18. Li X, Zhang D (2013) Eur Phys J D 67:163

    Article  Google Scholar 

  19. Puzzarini C, Peterson KA (2005) Chem Phys 311:177

    Article  CAS  Google Scholar 

  20. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283

    Article  CAS  Google Scholar 

  21. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  22. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  23. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gausian 03, Revision B.05. Gaussian Inc., Pittsburgh, PA

  25. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  26. Manion JA, Huie RE, Levin RD, Burgess Jr DR, Orkin VL, Tsang W, Givern WS, Hudgens JW, Knyazev VD, Atkinson DB, Chai E, Tereza AM, Lin CY, Allison TC, Mallard WG, Westley F, Herron JT, Hampson RF, Frizzell DH, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8320. http://kinetics.nist.gov/ Accessed 19 March 2014

  27. Pyykkö P, Runeberg N, Mendizabal F (1997) Chem Eur J 3:1451

    Article  Google Scholar 

  28. Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37:624

    Article  Google Scholar 

  29. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

  31. Belpassi L, Infante I, Tarantelli F, Visscher L (2008) J Am Chem Soc 130:1048

    Article  CAS  Google Scholar 

  32. Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627

    Article  Google Scholar 

  33. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529

    Article  CAS  Google Scholar 

  34. Espinosa E, Lecomte C, Molins E (1999) Chem Phys Lett 300:745

    Article  CAS  Google Scholar 

  35. Espinosa E, Lecomte C, Molins E (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  36. Nakanishi W, Hayashi S, Narahara K (2008) J Phys Chem A 112:13593

    Article  CAS  Google Scholar 

  37. Pilmé J, Renault E, Bassal F, Amaouch M, Montavon G, Galland N (2014) J Chem Theo Comput 10:4830

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Professor M. Dolg for helpful discussions. The research was supported by the Natural Science Foundation of China (Grant No. U1404210) and Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 13IRTSTHN017).

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Geng, Zd. Investigation into the metallophilic interaction in coinage-metal halides: an ab initio study of CMX (CM = Cu and Ag, X = F − I). J Mol Model 21, 205 (2015). https://doi.org/10.1007/s00894-015-2745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2745-7

Keywords

PACS

Navigation