Skip to main content
Log in

Theoretical study of interactions between electron-deficient arenes and coinage metal anions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The binding behavior of coinage metal anions with some electron-deficient arenes has been investigated by MP2 calculations, and the character of interactions in these complexes has been examined by NBO analysis. The results indicate that coinage metal anions can interact with electron-deficient arenes to form anion-π, strong σ-type and hydrogen-bonding complexes. The σ-type structure is the global minimum for triazine, trifluorotriazine, hexafluorobenzene and tricyanobenzene, and the hydrogen-bonding structure is the global minimum for trifluorobenzene. There exist some differences in the stability of anion-π complexes for coinage metal anions: the anion-π complexes of Au- are minima expect for triazine complex; the anion-π complexes of Ag- are minima expect for tricyanobenzene complex; and the anion-π complexes of Cu- are not minima expect for trifluorobenzene complex. The binding strength of anion-π and hydrogen-bonding complexes for Au- is larger than that for Ag- and Cu-, but the binding strength of σ complex displays a different sequence: Cu- > Au- > Ag-. The binding behavior of coinage metal anions is more similar to that of F- than that of Cl- and Br-. The relaxed potential energy surface scans for some selected systems have been performed to help understand the interactions between coinage metal anions with electron-deficient arenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Anion-π interactions: do they exist? Angew Chem Int Ed 41:3389–3392

    Article  Google Scholar 

  2. Schottel BL, Chifotides HT, Dunbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68–83

    Article  CAS  Google Scholar 

  3. Mascal M, Armstrong A, Bartberger MD (2002) Anion-aromatic bonding: a case for anion recognition by π-acidic rings. J Am Chem Soc 124:6274–6276

    Article  CAS  Google Scholar 

  4. Alkorta I, Rozas I, Elguero J (2002) Interaction of anions with perfluoro aromatic compounds. J Am Chem Soc 124:8593–8598

    Article  CAS  Google Scholar 

  5. Frontera A (2013) Encapsulation of anions: macrocyclic receptors based on metal coordination and anion–π interactions. Coord Chem Rev 257:1716–1727

    Article  CAS  Google Scholar 

  6. Frontera A, Quiñonero D, Deyà PM (2011) Cation–π and anion–π interactions. WIREs Comput Mol Sci 1:440–459

    Article  CAS  Google Scholar 

  7. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Putting anion-π interactions into perspective. Angew Chem Int Ed 50:9564–9583

    Article  CAS  Google Scholar 

  8. Estarellas C, Bauza A, Frontera A, Quiñonero D, Deyà PM (2011) On the directionality of anion-π interactions. Phys Chem Chem Phys 13:5696–5702

    Article  CAS  Google Scholar 

  9. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2004) Cation−π versus anion−π interactions: energetic, charge transfer, and aromatic aspects. J Phys Chem A 108:9423–9427

    Article  CAS  Google Scholar 

  10. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2005) Approximate additivity of anion − π interactions: an Ab initio study on anion−π, anion−π2 and anion−π3 complexes. J Phys Chem A 109:9341–9345

    Article  CAS  Google Scholar 

  11. Schneider H, Vogelhuber KM, Schinle F, Weber JM (2007) Aromatic molecules in anion recognition: electrostatics versus HBonding. J Am Chem Soc 129:13022–13026

    Article  CAS  Google Scholar 

  12. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deya PM (2003) A topological analysis of the electron density in anion-π interactions. ChemPhysChem 4:1344–1348

    Article  CAS  Google Scholar 

  13. Kim D, Lee EC, Kim KS, Tarakeshwar P (2007) Cation-π-anion interaction: a theoretical investigation of the role of induction energies. J Phys Chem A 111:7980–7986

    Article  CAS  Google Scholar 

  14. Kim DY, Singh NJ, Kim KS (2008) Cyameluric acid as anion-π type receptor for ClO4 - and NO3 -: π-stacked and edge-to-face structures. J Chem Theory Comput 4:1401–1407

    Article  CAS  Google Scholar 

  15. Kim DY, Singh NJ, Lee JW, Kim KS (2008) Solvent-driven structural changes in anion-π complexes. J Chem Theory Comput 4:1162–1169

    Article  CAS  Google Scholar 

  16. Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S (2010) Experimental evidence for the functional relevance of anion-π interactions. Nat Chem 2:533–538

    Article  CAS  Google Scholar 

  17. Ballester P (2013) Experimental quantification of anion-π interactions in solution using neutral host-guest model systems. Acc Chem Res 46:874–884

    Article  CAS  Google Scholar 

  18. Hay BP, Custelcean R (2009) Anion-π interactions in crystal structures: commonplace or extraordinary? Cryst Growth Des 9:2539–2545

    Article  CAS  Google Scholar 

  19. Demeshko S, Dechert S, Meyer F (2004) Anion−π interactions in a carousel copper(II)−triazine complex. J Am Chem Soc 126:4508–4509

    Article  CAS  Google Scholar 

  20. Rosokha YS, Lindeman SV, Rosokha SV, Kochi JK (2004) Halide recognition through diagnostic“anion-π” interactions: molecular complexes of Cl-, Br-, and I- with olefinic and aromatic π receptors. Angew Chem Int Ed 43:4650–4652

    Article  CAS  Google Scholar 

  21. de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J (2004) An aromatic anion receptor: anion-π interactions Do exist. Angew Chem Int Ed 43:5815–5817

    Article  Google Scholar 

  22. Schottel BL, Bacsa J, Dunbar KR (2005) Anion dependence of Ag(I) reactions with 3,6-Bis(2-pyridyl)-1,2,4,5-tetrazine (bptz): isolation of the molecular propeller compound [Ag2(bptz)3][AsF6]2. Chem Commun 46–47

  23. Wang D-X, Zheng Q-Y, Wang Q-Q, Wang M-X (2008) Halide recognition by tetraoxacalix[2]arene[2]triazine receptors: concurrent noncovalent halide-π and lone-pair-π interactions in host−halide−water ternary complexes. Angew Chem Int Ed 47:7485–7488

    Article  CAS  Google Scholar 

  24. Wang D-X, Wang Q-Q, Han Y, Wang Y, Huang Z-T, Wang M-X (2010) Versatile anion-π interactions between halides and a conformationally rigid Bis(tetraoxacalix[2]arene[2]triazine) cage and their directing effect on molecular assembly. Chem Eur J 16:13053–13057

    Article  CAS  Google Scholar 

  25. Das A, Choudhury SR, Estarellas C, Dey B, Frontera A, Hemming J, Helliwell M, Gamez P, Mukhopadhyay S (2011) Supramolecular assemblies involving anion–π and lone pair–π interactions: experimental observation and theoretical analysis. CrystEngComm 13:4519–4527

    Article  CAS  Google Scholar 

  26. Lucas X, Estarellas C, Escudero D, Frontera A, Quinonero D, Deya PM (2009) Very long-range effects: cooperativity between anion-π and hydrogen-bonding interactions. ChemPhysChem 10:2256–2264

    Article  CAS  Google Scholar 

  27. Escudero D, Frontera A, Quinonero D, Deya PM (2009) Interplay between anion-π and hydrogen bonding interactions. J Comput Chem 30:75–82

    Article  CAS  Google Scholar 

  28. Quinonero D, Frontera A, Garau C, Ballester P, Costa A, Deya PM (2006) Interplay between cation–π, anion–π and π–π interactions. ChemPhysChem 7:2487–2491

    Article  CAS  Google Scholar 

  29. Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) MP2 study of cooperative effects between cation–π, anion–π and π–π interactions. New J Chem 31:556–560

    Article  CAS  Google Scholar 

  30. Estarellas C, Frontera A, Quinonero D, Deya PM (2011) Theoretical study on cooperativity effects between anion–π and halogen-bonding interactions. ChemPhysChem 12:2742–2750

    Article  CAS  Google Scholar 

  31. Berryman OB, Bryantsev VS, Stay DP, Johnson DW, Hay BP (2007) Structural criteria for the design of anion receptors: the interaction of halides with electron-deficient arenes. J Am Chem Soc 129:48–58

    Article  CAS  Google Scholar 

  32. Hay BP, Bryantsev VS (2008) Anion-arene adducts: C-H hydrogen bonding, anion-π interaction, and carbon bonding motifs. Chem Commun 21:2417–2428

    Article  Google Scholar 

  33. Mascal M, Yakovlev I, Nikitin EB, Fettinger JC (2007) Fluoride-selective host based on anion-π interactions, ion pairing, and hydrogen bonding: synthesis and fluoride-ion sandwich complex. Angew Chem Int Ed 46:8782–8784

    Article  CAS  Google Scholar 

  34. Alberto ME, Mazzone G, Russo N, Sicilia E (2010) The mutual influence of Non-covalent interactions in π-electron deficient cavities: the case of anion recognition by tetraoxacalix[2]-arene[2]triazine. Chem Commun 46:5894–5896

    Article  CAS  Google Scholar 

  35. Chen Y-S (2013) Theoretical study of interactions between halogen-substituted s-triazine and halide anions. J Phys Chem A 117:8081–8090

    Article  CAS  Google Scholar 

  36. Chen Y-S, Yao L-F (2014) Theoretical study of X- · 1 · YF (1 = triazine, X = Cl, Br and I, Y = H, Cl, Br, I, PH2 and AsH2): noncovalently electron-withdrawing effects on anion-arene interactions. J Mol Model 2076, 1−11

  37. Schneider H, Boese AD, Weber J (2005) Unusual hydrogen bonding behavior in binary complexes of coinage metal anions with water. J Chem Phys 123:084307, 1−6

    Article  Google Scholar 

  38. Kryachko ES, Remacle F (2007) The gold-ammonia bonding patterns of neutral and charged complexes Aum 0±1–(NH3)n. I. Bonding and charge alternation. J Chem Phys 127:194305, 1−11

    Article  CAS  Google Scholar 

  39. Cao G-J, Xu H-G, Li R-Z, Zheng W-J (2012) Hydrogen bonds in the nucleobase-gold complexes: photoelectron spectroscopy and density functional calculations. J Chem Phys 136:014305, 1−8

    Article  Google Scholar 

  40. Vargas R, Martínez A (2011) Non-conventional hydrogen bonds: pterins-metal anions. Phys Chem Chem Phys 13:12775–12784

    Article  CAS  Google Scholar 

  41. Frisch MJ et al (2010) Gaussian 09. Gaussian Inc, Wallingford, CT

    Google Scholar 

  42. Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Alvarez-Idaboy JR, Galano A (2010) Counterpoise corrected interaction energies are not systematically better than uncorrected ones: comparison with CCSD(T) CBS extrapolated values. Theor Chem Acc 126:75–85

    Article  CAS  Google Scholar 

  45. Mentel LM, Baerend EJ (2014) Can the counterpoise correction for basis set superposition effect be justified? J Chem Theory Comput 10:252–267

    Article  CAS  Google Scholar 

  46. Weinhold F, Landis C (2012) Discovering chemistry with natural bond orbitals. Wiley, Hoboken

    Book  Google Scholar 

  47. Dennington R, Keith T, Millam JS (2009) GaussView, version 5. Semichem Inc, Shawnee Mission, KS

  48. Wiberg KB (1968) Application of the pople-santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  49. Dick B, Freund HJ (1983) Analysis of bonding properties in molecular ground and excited states by a Cohen-type bond order. Int J Quantum Chem 24:747–765

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the HPC Center, Kunming Institute of Botany, CAS, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, F. Theoretical study of interactions between electron-deficient arenes and coinage metal anions. J Mol Model 21, 38 (2015). https://doi.org/10.1007/s00894-015-2584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2584-6

Keywords

Navigation