Skip to main content

Advertisement

Log in

Direct dynamics simulations of the hydrogen abstraction reaction Cl + CF3CF2CH2OH

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism and kinetics of 2,2,3,3,3-pentafluoropropanol (CF3CF2CH2OH) reaction with Chlorine atom (Cl) is investigated in this work. Two hydrogen abstraction channels of the title reaction are identified. The geometries of all the stationary points in the potential energy surface are obtained at the BHandHLYP/6-311G** level, and the energies of the selected points along the minimum energy path (MEP) are improved by the CCSD(T) method. A dual-level direct dynamics method is employed to study the kinetic nature of the hydrogen-abstraction reaction channels. The calculated rate coefficients show that the hydrogen abstraction from the CH2 group is the primary channel. The calculated total rate coefficients are in best agreement with the experimental values. The four-parameter rate coefficients expression of the title reaction between the temperatures 200 K and 1000 K is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ravishankara AR, Turnipseed AA, Jensen NR, Barone S, Mills M, Howard CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  2. WMO/UNEP, 2010: Scientific Assessment of Ozone Depletion

  3. Furon T (1990) Manyuaru S. Fluorocarbon Manufacturers Association, Tokyo, Japan

    Google Scholar 

  4. Singh HB, Kasting JF (1988) J Atmos Chem 7:261–285

    Article  CAS  Google Scholar 

  5. Spicer W, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Nature 394:353–356

    Article  CAS  Google Scholar 

  6. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic, New York

    Google Scholar 

  7. Tanaka PL, Riemer DD, Chang SH, Yarwood G, McDonald-Buller EC, Apel EC, Orlando JJ, Silva PJ, Jimenez JL, Canagaratna MR, Neece JD, Mullins CD, Allen DT (2003) Atmos Environ 37:1393–1400

    Article  CAS  Google Scholar 

  8. Tanaka PL, Oldfield S, Neece JD, Mullins CB, Allen DT (2000) Environ Sci Technol 34:4470–4473

    Article  CAS  Google Scholar 

  9. Tokuhashi K, Nagai H, Takahashi A, Kaise M, Kondo S, Sekiya A, Takahashi M, Gotoh Y, Suga A (1999) J Phys Chem A 103:2664–2672

    Article  CAS  Google Scholar 

  10. Chen L, Fukuda K, Takenaka N, Bandow H, Maeda Y (2000) Int J Chem Kinet 32:73–78

    Article  CAS  Google Scholar 

  11. Hurley MD, Wallington TJ, Sulbaek MP, Andersen S, Ellis DA, Martin JW, Mabury SA (2004) J Phys Chem A 108:1973–1979

    Article  CAS  Google Scholar 

  12. Antinolo M, Gonzalez S, Ballesteros B, Albaladejo J, Jimenez E (2012) J Phys Chem A 116:6041–6050

    Article  CAS  Google Scholar 

  13. Wang Y, Liu J, Li Z, Wang L, Wu J, Sun C (2006) J Phys Chem A 110:5853–5859

    Article  CAS  Google Scholar 

  14. Papadimitriou VC, Papanastasiou DK, Stefanopoulos VG, Zaras AM, Lazarou YG, Papagiannakopoulos P (2007) J Phys Chem A 111:11608–11617

    Article  CAS  Google Scholar 

  15. Garzon A, Antinolo M, Moral M, Notario A, Jimenez E, Fernandez-Gomez M, Albaladejo J (2013) Mol Phys 111:753–763

    Article  CAS  Google Scholar 

  16. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  18. Yang L, Liu JY, Li ZS (2008) J Phys Chem A 112:6364–6372

    Article  CAS  Google Scholar 

  19. Yu AY, Zhang HX (2013) Mol Phys doi:10.1007/s00894-013-1960-3

  20. Scuseria GE, Schaefer HF (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  21. Pople JA, Gordon MH, Raghavachari K (1989) J Chem Phys 87:5968–5975

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09. Revision X. Gaussian Inc, Wallingford, CT

    Google Scholar 

  23. Truhlar DG (1995) In: Heidrich D (Ed.) The reaction path in chemistry: current approaches and perspectives; Kluwer, Dordrecht, the Netherlands, p 229

  24. Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Chem Rev 106:4518–4584

    Article  CAS  Google Scholar 

  25. Hu WP, Truhlar DG (1995) J Am Chem Soc 117:10726–10734

    Article  CAS  Google Scholar 

  26. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593–1598

    Article  CAS  Google Scholar 

  27. Liu YP, Lynch GC, Truong TN, Liu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  28. Steckler R, Hu WP, Liu YP, Lynch GC, Garrett BC, Isaacson AD, Melissas VS, Lu DP, Troung TN, Rai SN, Hancock GC, Lauderdate JG (1995) Comput Phys Commun 88:341–343

    Article  CAS  Google Scholar 

  29. Truhlar DG (1991) J Comp Chem 12:266–270

    Article  CAS  Google Scholar 

  30. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221–1228

    Article  CAS  Google Scholar 

  31. Liu YP, Gonzàlez-Lafont A, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:7806–7817

    Article  CAS  Google Scholar 

  32. Truhlar DG, Isaacson AD, Garrett BC (1985) In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; 4: 65-137

  33. Truhlar DG, Isaacson AD, Skodje RT, Garrett BC (1982) J Phys Chem 86:2252–2261

    Article  CAS  Google Scholar 

  34. Chang YY, Corchado JC, Fast PL, Villa J, Hu WP, Liu YP, Lynch GC, Jackels CF, Nguyen KA, Gu MZ, Rossi I, Coitino EL, Claylon S, Melissas VS, Lynch BJ, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) POLYRATE version 9.6. University of Minnesota, Minneapolis

    Google Scholar 

  35. Scheiner S, Seybold PG (2009) Struc Chem 20:43–48

    Article  CAS  Google Scholar 

  36. Zheng J, Truhlar DG (2012) Faraday Discuss 157:59–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Grant No.20973076 and 21173096) and Specialized Research Fund for the Doctoral Program of Higher Education (20110061110018). Thanks are due to the reviewers for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang-yang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Ay., Zhang, Hx. Direct dynamics simulations of the hydrogen abstraction reaction Cl + CF3CF2CH2OH. J Mol Model 19, 4503–4510 (2013). https://doi.org/10.1007/s00894-013-1960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1960-3

Keywords

Navigation