Skip to main content
Log in

Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced.

The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (∼10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AikinA. C., HermanJ. R., MaierE. J., and McQuillanC. J., 1983, Influence of peroxyacetyl nitrate (PAN) on odd nitrogen in the troposphere and lower stratosphere, Planet. Space Sci. 31, 1075–1082.

    Google Scholar 

  • AikinA. C., GallagherC. C., SpicerW. C., and HoldrenM. W., 1987, Measurement of methane and other light hydrocarbons in the troposphere and lower stratosphere, J. Geophys. Res. 92, 3135–3138.

    Google Scholar 

  • AllenM. and FrederickJ. E., 1982, Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge bands, J. Atmos. Sci. 39, 2066–2075.

    Google Scholar 

  • ArnoldF., KnopG., and ZiereisH., 1986, Acetone measurements in the upper troposphere and lower stratosphere-implications for hydroxyl radical abundance, Nature 321, 505–507.

    Google Scholar 

  • AusloosP., RebbertR. E., and GlasgowL., 1977, Photodecomposition of chloromethanes adsorbed on silica surfaces, J. Geophys. Res. 82, 1–8.

    Google Scholar 

  • BascoN. and ParmarS. S., 1987, The reaction of acetylperoxyl radicals with NO2, Int. J. Chem. Kin. 19, 115–128.

    Google Scholar 

  • BaulchD. L., CoxR. A., HampsonR. F.Jr., KerrJ. A., TroeJ., and WatsonR. T. 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II, J. Phys. Chem. Ref. Data 4, 1259–1273.

    Google Scholar 

  • BergW. W. and WinchesterJ. W., 1977, Organic and inorganic gaseous chlorine concentrations in relation to the particle size distribution of chloride in the marine aerosol, J. Geophys. Res. 82, 5945–5953.

    Google Scholar 

  • BlakeD. R. and RowlandF. S. 1986, Global atmospheric concentrations and source strength of ethane, Nature 321, 231–233.

    Google Scholar 

  • BoruckiW. J. and ChameidesW. L., 1984, Lightning: Estimates of the rates of energy dissipation and nitrogen fixation, Rev. Geophys. 22, 363–372.

    Google Scholar 

  • Buat-Menard, P., 1970, Contribution a l'étude dy cycle géochimique du chlore d'origine marine, thése de 3eme cycle, Fac. des Sci., Paris.

  • ChameidesW. L., 1984, The photochemistry of a remote marine stratiform cloud, J. Geophys. Res. 89, 4739–4755.

    Google Scholar 

  • ChameidesW. L. and CiceroneR. J., 1978, Effects of nonmethane hydrocarbons in the atmosphere, J. Geophys. Res. 83, 3684–3696.

    Google Scholar 

  • Chesselet, R., Morelli, J., and Buat-Menard, P., 1974, Some aspects of the geochemistry of marine aerosols, in D. Dyrssen and D. Jagner (eds.), Proc. Nobel Symposium 20, The Changing Chemistry of the Oceans, pp. 93–114.

  • CiceroneR. J., 1981, Halogens in the atmosphere, Rev. Geophys. Space Phys. 19, 123–139.

    Google Scholar 

  • CleggS. L. and BrimblecombeP., 1985, Potential degassing of hydrogen chloride from acidified sodium chloride droplets, Atmos. Environ. 19, 465–470.

    Google Scholar 

  • DeMore, W. B., Margitan, J. J., Molina, M. J., Watson, R. T., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1985, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Eval. No. 7, JPL Publication, pp. 85–37.

  • DimitriadesB., GayB. W., ArntsR. R., and SeilaR. L., 1983, Photochemical reactivity of perchleroethylene, J. Air Pollut. Control Assoc. 33, 575–587.

    Google Scholar 

  • DuceR. A., 1969, On the source of gaseous chlorine in the marine atmosphere, J. Geophys. Res. 74, 4597–4599.

    Google Scholar 

  • DuceR. A., WinchesterJ. W., and VanNahlT. W., 1965, Iodine, bromine and chlorine in the Hawaiian marine atmosphere, J. Geophys. Res. 70, 1775–1799.

    Google Scholar 

  • DuceR. A., MohnenV. A., ZimmermanP. R., GrosjeanD., CautreelsW., ChatfieldR., JaenickeR., OgrenJ. A., PellizzariE. D., and WallaceG. T., 1983, Organic material in the global troposphere, Rev. Geophys. Space Phys. 21, 921–952.

    Google Scholar 

  • EhhaltD. H., RudolphJ., MeixnerF., and SchmidtU., 1985, Measurements of selected C2−C5 hydrocarbons in the background troposphere: Vertical and latitudinal variations, J. Atmos. Chem. 3, 29–52.

    Google Scholar 

  • ErikssonE., 1960, The yearly circulation of chloride and sulfur in nature; meteorological, geochemical and pedological implications—II, Tellus 11, 63–109.

    Google Scholar 

  • FaheyD. W., HüblerG., ParrishD. D., WilliamsE. J., NortonR. B., RidleyB. A., SinghH. B., LiuS. C., and FehsenfeldF. C., 1986, Reactive nitrogen species in the troposphere: Measurements of NO, NO2, HNO3, particulate nitrate, peroxyacetyl nitrate (PAN), O3, and total reactive odd nitrogen (NO y ), at Niwot Ridge, Colorado, J. Geophys. Res. 91, 9781–9793.

    Google Scholar 

  • FarmanJ. C., GardnerB. G., and ShanklinJ. D., 1985, Large losses of tropospheric ozone in Antarctic reveal seasonal ClO x /NO x interaction, Nature 315, 207–210.

    Google Scholar 

  • FarmerC. B., RaperO. F., and NortonR. H., 1976, Spectroscopic detection and vertical distribution of HCl in the troposphere and stratosphere, Geophys. Res. Lett. 3, 13–16.

    Google Scholar 

  • Finlayson-PittsB. J., 1983, Reaction of NO2 with NaCl and atmospheric implications of NOCl formation, Nature 306, 676–677.

    Google Scholar 

  • FishmanJ. and CrutzenP. J., 1977, A numerical study of tropospheric photochemistry using a onedimensional model, J. Geophys. Res. 82, 5897–5906.

    Google Scholar 

  • FroidevauxL., AllenM., and YungY. L., 1985, A critical analysis of ClO and O3 in the midlatitude stratosphere, J. Geophys. Res. 90, 12999–13030.

    Google Scholar 

  • Fuchs, N. A. and Sutugin, A. G., 1971, High dispersed aerosols, in G. M. Hidy and J. R. Brock (eds.), Topics in Current Aerosol Research, Vol. 2, Pergamon Press, pp. 1–60.

  • GapS., SchmitzerJ., ThammH. W., ParlarH., and KorteF., 1977, Photomineralisation rate of organic compounds adsorbed on particulate matter, Nature 270, 331–333.

    Google Scholar 

  • GeorgiiH. W., 1961, Untersuchungen der atmospherische Supernstoffe und ihre Bedeutungen für die Chemie der Niederschläge, Geofis. pura appl. 47, 155–171.

    Google Scholar 

  • GiorgiF. and ChameidesW. L., 1985, The rainout parameterization in a photochemical model, J. Geophys. Res. 90, 7872–7880.

    Google Scholar 

  • GreenbergJ. P., and ZimmermanP. R., 1984, Nonmethane hydrocarbons in remote troposphere, J. Geophys. Res. 89, 4767–4778.

    Google Scholar 

  • GoldmanA., RinslandC. P., MurcrayF. J., MurcrayD. G., CoffeyM. T., and MankinW. G., 1984, Balloon-borne and aircraft infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere, J. Atmos. Chem. 2, 211–221.

    Google Scholar 

  • HamillP., ToonO. B., and KiangC. S., 1977, Microphysical processes affecting stratospheric aerosol particles, J. Atmos. Sci. 34, 1104–1119.

    Google Scholar 

  • HanstP. L., 1981, Nonmethane hydrocarbons in the atmosphere and their role in the scavenging of stratospheric chlorine atoms, report, U.S. Environ. Prot. Agency, Research Triangle Park, N.C.

    Google Scholar 

  • JungeC. E., 1956, Recent investigations in air chemistry, Tellus 8, 127–139.

    Google Scholar 

  • JungeC. E., 1957, Chemical analysis of aerosol particles and of gas traces on the island of Hawaii, Tellus 9, 528–537.

    Google Scholar 

  • KastingJ. F., HollandH. D., and PintoJ. P., 1985, Oxidant abundances in rainwater and the evolution of atmospheric oxygen, J. Geophys. Res. 90, 10497–10510.

    Google Scholar 

  • KastingJ. F. and SinghH. B., 1986, Nonmethane hydrocarbons in the troposphere: Impact on odd hydrogen and odd nitrogen chemistry, J. Geophys. Res. 91, 13239–13256.

    Google Scholar 

  • KrugerB. C., WangG. Q., and FabianP., 1987, The Antarctic ozone depletion caused by heterogeneous photolysis of halogenated hydrocarbons, Geophys. Res. Lett. 14, 523–526.

    Google Scholar 

  • LeeY. N. and SchwartzS. E., 1981a, Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem. 85, 840–848.

    Google Scholar 

  • LeeY. N. and SchwartzS. E., 1981b, Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water, J. Geophys. Res. 86, 11971–11983.

    Google Scholar 

  • LevyH.II, 1971, Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173, 141–143.

    Google Scholar 

  • LewisR. S., SanderS. P., WagnerS., and WatsonR. J.,1980, Temperature dependent rate constants for the reaction of ground-state chlorine with simple alkanes, J. Phys. Chem. 84, 2009–2015.

    Google Scholar 

  • LoganJ. A., 1983, Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res. 88, 10785–10807.

    Google Scholar 

  • LoganJ. A., PratherM. J., WofsyS. C., and McElroyM. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • MassieS. T. and HuntenD. M., 1981, Stratospheric eddy diffusion coefficients from tracer data, J. Geophys. Res. 86, 9859–9868.

    Google Scholar 

  • MatuscaP., SchwarzB., and BachmannK., 1984, Measurements of diurnal concentration variations of gaseous HCl in air in the sub-nanogram range. Atmos. Environ. 18, 1667–1675.

    Google Scholar 

  • NikiH., DabyE., and WeinstockB., 1972, Mechanisms of smog reactions, Advan. Chem. 113, 16–57.

    Google Scholar 

  • O'Hara, D. and Singh, H. B., 1988, Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector, Atmos. Environ. (in press).

  • OkitaT., KanedaK., and SugaiR., 1974, Determination of gaseous and particulate Cl and fluoride in the atmosphere, Atmos. Environ. 8, 927–936.

    Google Scholar 

  • ParlarH., 1984, Geochemical induced degradation of environmental chemicals, Fresenius Z. Anal. Chem. 319, 114–118.

    Google Scholar 

  • ParungoF. P., NagamotoC. T., RosinskiJ., and HaagensonP. L., 1986, A study of marine aerosols over the Pacific ocean. J. Atmos. Chem. 4, 199–226.

    Google Scholar 

  • PenkettS. A., 1982, Non-methane organics in the remote troposphere, in E. D.Goldberg (ed.) Atmospheric Chemistry, Springer-Verlag, New York, pp. 329–355.

    Google Scholar 

  • PenkettS. A., JonesB. M. R., RoycroftM. J., and SimmonsD. A., 1985, An interhemispheric comparison of the concentration of bromine compounds in the atmosphere, Nature 318, 550–553.

    Google Scholar 

  • RahnK. A., BorysR. D., and DuceR. A., 1976, Tropospheric halogen gases: Inorganic and organic components, Science 192, 549–550.

    Google Scholar 

  • RancherJ. and KritzM. A., 1980, Diurnal fluctuations of Br and I in the tropical marine atmosphere, J. Geophys. Res. 85, 5581–5587.

    Google Scholar 

  • RobbinsR. C., CadleR. D., and EckhardD. L., 1959, The conversion of sodium chloride to hydrogen chloride in the atmosphere, J. Meteorol. 16, 53.

    Google Scholar 

  • RobinsonE., 1978, Hydrocarbons in the atmosphere, Pure Appl. Geophys. 116, 372–384.

    Google Scholar 

  • RossiM. J., MalhotraR., and GoldenD. M., 1987, Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperatures, Geophys. Res. Lett. 14, 127–130.

    Google Scholar 

  • RudolphJ., and EhhaltD. H., 1981, Measurements of C2-C5 hydrocarbons over the North Atlantic, J. Geophys. Res. 86, 11959–11964.

    Google Scholar 

  • RudolphJ., EhhaltD. H., and TönnissenA., 1981, Vertical profiles of ethane and propane in the stratosphere, J. Geophys. Res. 86, 7267–7272.

    Google Scholar 

  • SchroederW. H. and UroneP., 1974, Formation of nitrosyl chloride from salt particles in air, Environ. Sci. Technol. 8, 756–758.

    Google Scholar 

  • SenumG. I., FajerR., and GaffneyJ. S., 1986, Fourier transform infrared spectroscopic study of the thermal stability of peroxyacetyl nitrate, J. Phys. Chem. 90, 152–156.

    Google Scholar 

  • SolomonS., GarciaR. R., RowlandF. S., and WuebblesD. J., 1986, On the depletion of Antarctic ozone, Nature 321, 755–758.

    Google Scholar 

  • SinghH. B., 1976, Phosgene in the ambient air, Nature 264, 428–429.

    Google Scholar 

  • SinghH. B., 1977. Atmospheric halocarbons: Evidence in favor of reduced average hydroxyl radical, concentrations, Geophys. Res. Lett. 4, 101–104, 1977.

    Google Scholar 

  • SinghH. B., 1987, Reactive nitrogen in the troposphere, Environ. Sci. Technol. 21, 320–327.

    Google Scholar 

  • SinghH. B. and HanstP. L., 1981, Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: An important reservoir for nitrogen oxides, Geophys. Res. Lett. 8, 941–944.

    Google Scholar 

  • SinghH. B. and SalasL. J., 1982, Measurement of selected light hydrocarbons over the Pacific Ocean: latitudinal and seasonal variations, Geophys. Res. Lett. 9, 842–845.

    Google Scholar 

  • SinghH. B., SalasL. J., and StilesR. E., 1983, Selected man-made halogenated chemicals in the air and oceanic environment, J. Geophys. Res. 88, 3675–3683.

    Google Scholar 

  • SinghH. B., SalasL. J., RidleyB. A., ShetterJ., DonahueN. M., FehsenfeldF. S., FaheyD. W., ParrishD. D., WilliamsE. J., LiuS. C., HublerG., and MurphyP. C., 1985, Relationship between peroxyacetyl nitrate (PAN) and nitrogen oxides in the clean troposphere, Nature 318, 347–349.

    Google Scholar 

  • TaylorW. D., 1980, Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate, Int. J. Chem. Kinet. 12, 231–240.

    Google Scholar 

  • TilleK. J. W., SavelsbergM., and BachmannK., 1985, Airborne measurements of nonmethane hydrocarbons over Western Europe: Vertical distributions, seasonal cycles of mixing ratios and source strengths, Atmos. Environ. 19, 1751–1760.

    Google Scholar 

  • Vierkorn-RudolphB., BachmannK., ScharzB., MeixnerF. X., 1984, Vertical profiles of hydrogen chloride in the troposphere, J. Atmos. Chem. 2, 47–63.

    Google Scholar 

  • WMO, Atmospheric Ozone, 1985, Halogenated species — Chapter 11, WMO report No. 16, pp. 605–648.

  • WallingtonT. J., AtkinsonR., and WinerA. M., 1984, Rate constants for the gas phase reaction of OH radicals with peroxyacetyl nitrate (PAN) at 273 K and 297 K, Geophys. Res. Lett. 1, 861–864.

    Google Scholar 

  • WofsyS. C. and McElroyM. B., 1974, HO x , NO x , and ClO x : Their role in atmospheric photochemistry, Can. J. Chem. 52, 1582–1591.

    Google Scholar 

  • YostD. M. and RussellH.Jr., 1944, Systematic Inorganic Chemistry, Prentice-Hall, New York, pp. 42–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.B., Kasting, J.F. Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J Atmos Chem 7, 261–285 (1988). https://doi.org/10.1007/BF00130933

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130933

Key words

Navigation