Skip to main content
Log in

Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In a previous study we investigated the effects of aromatic fluorine substitution on the strengths of the halogen bonds in halobenzene…acetone complexes (halo = chloro, bromo, and iodo). In this work, we have examined the origins of these halogen bonds (excluding the iodo systems), more specifically, the relative contributions of electrostatic and dispersion forces in these interactions and how these contributions change when halogen σ-holes are modified. These studies have been carried out using density functional symmetry adapted perturbation theory (DFT-SAPT) and through analyses of intermolecular correlation energies and molecular electrostatic potentials. It is found that electrostatic and dispersion contributions to attraction in halogen bonds vary from complex to complex, but are generally quite similar in magnitude. Not surprisingly, increasing the size and positive nature of a halogen’s σ-hole dramatically enhances the strength of the electrostatic component of the halogen bonding interaction. Not so obviously, halogens with larger, more positive σ-holes tend to exhibit weaker dispersion interactions, which is attributable to the lower local polarizabilities of the larger σ-holes.

In this work we investigate the roles played by electrostatic and dispersion forces in stabilizing halogen bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  2. Metrangolo P, Resnati G (2008) Halogen bonding: fundamentals and applications. Springer, Berlin

    Book  Google Scholar 

  3. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Nat Acad Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  4. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  5. Riley KE, Hobza P (2011) Cryst Growth Des 11:4272–4278. doi:10.1021/Cg200882f

    Article  CAS  Google Scholar 

  6. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314–318. doi:10.1002/Anie.201006781

    Article  CAS  Google Scholar 

  7. Riley KE, Murray JS, Concha MC, Politzer P, Hobza P (2009) J Chem Theor Comput 5:155–163

    Article  CAS  Google Scholar 

  8. Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS (2009) In: Leszczynski J, Shukla M (eds) Practical Aspects of Computational Chemistry. Springer, Heidelberg, pp 149–163

    Chapter  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  11. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Crystal Growth Design 11:4238–4246. doi:10.1021/Cg200888n

    Article  CAS  Google Scholar 

  12. Ikuta S (1990) J Mol Struct (THEOCHEM) 205:191–201

    Article  Google Scholar 

  13. Nyburg SC, Wong-Ng W (1979) Proc Royal Soc London A 367:29–45

    Article  CAS  Google Scholar 

  14. Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918

    Article  CAS  Google Scholar 

  15. Stevens ED (1979) Mol Phys 37:27–45

    Article  CAS  Google Scholar 

  16. Tsirelson VG, Zou PF, Tang TH, Bader RFW (1995) Acta Cryst A51:143–153

    CAS  Google Scholar 

  17. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  18. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) J Mol Model doi: 10.1007/s00894-011-1263-5

  19. Shields Z, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  20. Riley KE, Hobza P (2008) J Chem Theor Comput 4:232–242. doi:10.1021/Ct700216w

    Article  CAS  Google Scholar 

  21. Chalasinski G, Szczesniak MM (2000) Chem Rev 100:4227–4252. doi:10.1021/Cr990048z

    Article  CAS  Google Scholar 

  22. Hobza P, Zahradnik R, Muller-Dethlefs K (2006) Coll Czech Chem Commun 71:443–531

    Article  CAS  Google Scholar 

  23. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  24. Chen J, Martinez TJ (2007) Chem Phys Lett 438:315–320

    Article  CAS  Google Scholar 

  25. Sokalski WA, Roszak SM (1991) J Mol Struct (THEOCHEM) 80:387–400

    Article  CAS  Google Scholar 

  26. Ma YG, Politzer P (2004) J Chem Phys 120:3152–3157. doi:10.1063/1.1640991

    Article  CAS  Google Scholar 

  27. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  28. Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  29. Hobza P, Zahradnik R (1992) Int J Quantum Chem 42:581–590

    Article  CAS  Google Scholar 

  30. Jaffe RL, Smith GD (1996) J Chem Phys 105:2780–2788

    Article  CAS  Google Scholar 

  31. Shishkin OV (2008) Chem Phys Lett 458:96–100. doi:10.1016/J.Cplett.2008.04.106

    Article  CAS  Google Scholar 

  32. Shishkin OV, Zubatyuk RI, Dyakonenko VV, Lepetit C, Chauvin R (2011) Phys Chem Chem Phys 13:6837–6848. doi:10.1039/C0cp02666b

    Article  CAS  Google Scholar 

  33. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  34. Hesselmann A, Jansen G (2003) Phys Chem Chem Phys 5:5010–5014. doi:10.1039/B310529f

    Article  CAS  Google Scholar 

  35. Hesselmann A, Jansen G, Schutz M (2005) J Chem Phys 122:014103

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  37. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  38. Tekin A, Jansen G (2007) Phys Chem Chem Phys 9:1680–1687

    Article  CAS  Google Scholar 

  39. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  40. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  42. Ayers PW (2007) Chem Phys Lett 438:148–152. doi:10.1016/J.Cplett.2007.02.070

    Article  CAS  Google Scholar 

  43. Politzer P (2004) Theor Chem Acc 111:395–399. doi:10.1007/S00214-003-0533-4

    Article  CAS  Google Scholar 

  44. Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163. doi:10.1002/Wcms.19

    Article  CAS  Google Scholar 

  45. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  46. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  47. Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  48. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  49. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665. doi:10.1007/S00894-008-0280-5

    Article  CAS  Google Scholar 

  50. Wang FF, Hou JH, Li ZR, Wu D, Li Y, Lu ZY, Cao WL (2007) J Chem Phys 126:144301. doi:Artn144301Doi10.1063/1.2715559

    Article  Google Scholar 

  51. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  52. Jin P, Murray JS, Politzer P (2004) Int J Quantum Chem 96:394–401. doi:10.1002/Qua.10717

    Article  CAS  Google Scholar 

  53. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742. doi:10.1007/S00894-010-0709-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was a part of research Project No. Z40550506 of the Institute of Organic Chemistry and Biochemistry, ASCR and was supported by the Operational Program Research and Development for Innovations - European Regional Development Fund (Project CZ.1.05/2.1.00/03.0058 of the MEYS of the CR). The support of Praemium Academiae, ASCR, awarded to P.H. in 2007 is acknowledged. This work was also supported by the Czech Science Foundation (P208/12/G016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. Riley.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, K.E., Murray, J.S., Fanfrlík, J. et al. Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19, 4651–4659 (2013). https://doi.org/10.1007/s00894-012-1428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1428-x

Keywords

Navigation