Skip to main content
Log in

Role of wobble base pair geometry for codon degeneracy: purine-type bases at the anticodon wobble position

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Codon degeneracy is a key feature of the genetic code, explained by Crick (J Mol Biol 19:548-555, 1966) in terms of imprecision of base pairing at the codon third position (the wobble position) of the codon-anticodon duplex. The Crick wobble rules define, but do not explain, which base pairs are allowed/disallowed at the wobble position of this duplex. This work examines whether the H-bonded configurations of solitary RNA base pairs can in themselves help decide which base pairs are allowed at the wobble position during codon-anticodon pairing. Taking the purine-type bases guanine, hypoxanthine, queuine and adenine as anticodon wobble bases, H-bonded pairing energies and optimized configurations of numerous RNA base pairs are calculated in gas and modeled aqueous phase at the B3LYP/6-31 G(d,p) level. Calculated descriptors of alignment of these solitary base pairs are able to screen between allowed and disallowed base pairs for all cases studied here, except two cases which invoke base-sugar interactions in the codon wobble nucleoside. The exclusion of adenine from the anticodon wobble position cannot be explained on the basis of pairing facility or base pair geometry. These DFT results thus account for the specificity and degeneracy of the genetic code for all cases involving guanine, hypoxanthine and queuine as anticodon wobble bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crick FHC (1966) J Mol Biol 19:548–555

    Article  CAS  Google Scholar 

  2. Woese CR (1967) The genetic code: The molecular basis for genetic expression. Harper and Row, New York

    Google Scholar 

  3. Ycas M (1969) The biological code (Frontiers of biology, volume 12). North-Holland, Amsterdam

    Google Scholar 

  4. Osawa S, Jukes TH, Watanabe K, Muto A (1992) Microbiol Mol Biol Rev 56:229–264

    CAS  Google Scholar 

  5. Boren T, Elias P, Samuelsson T, Claesson C, Barciszewska M, Gehrke CW, Kuo KC, Lustig F (1993) J Mol Biol 230:739–749

    Article  CAS  Google Scholar 

  6. Inagaki Y, Kojima A, Bessho Y, Hori H, Ohama T, Osawa S (1995) J Mol Biol 251:486–492

    Article  CAS  Google Scholar 

  7. Sodd MA (1969) Nucleic Acids. In: Fasman GD (ed) Handbook of biochemistry and molecular biology, vol II. CRC, Cleveland, p 423

    Google Scholar 

  8. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J (2009) Nucleic Acids Res 37:D159–D162

    Article  Google Scholar 

  9. Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Biochemistry 37:14719–14735

    Article  CAS  Google Scholar 

  10. Mathews DH, Sabina J, Juker M, Turner DH (1999) J Mol Biol 288:911–940

    Article  CAS  Google Scholar 

  11. Mangang SU, Lyngdoh RHD (2001) Indian J Biochem Biophys 38:115–119

    CAS  Google Scholar 

  12. Das G, Lyngdoh RHD (2008) J Mol Struct (THEOCHEM) 851:319–334

    Article  CAS  Google Scholar 

  13. Sadlej-Sosnowska N (2009) J Mol Struct (THEOCHEM) 913:270–276

    Article  CAS  Google Scholar 

  14. Sponer J, Lankas F (2009) Computational Studies of RNA and DNA. Challenges and advances in computational chemistry and physics. 2. Springer, Heidelberg

  15. Sponer JE, Vazquez-Mayagoitia A, Sumpter BJ, Leszczynski J, Sponer J, Otyepka M, Banas P, Feuntes-Cabrera M (2010) Chem Eur J 16:3057–3065

    Article  CAS  Google Scholar 

  16. Sponer J, Leszczynski J, Hobza P (2001) Biopolymers 61:3–31

    Article  CAS  Google Scholar 

  17. Sponer J, Jurecka P, Hobza P (2004) J Am Chem Soc 126:10142–10151

    Article  CAS  Google Scholar 

  18. Zhanpeisov NU, Sponer J, Leszczynski J (1998) J Phys Chem A 102:10374–10379

    Article  CAS  Google Scholar 

  19. Kratochvil M, Engkvist O, Sponer J, Jungwirth P, Hobza P (1998) J Phys Chem A 102:6921–6926

    Article  CAS  Google Scholar 

  20. Hobza P, Sponer J, Cubero E, Orozco M, Luque FJ (2000) J Phys Chem B 104:6286–6292

    Article  CAS  Google Scholar 

  21. Jurecka P, Sponer J, Hobza P (2004) J Phys Chem B 108:5466–5471

    Article  CAS  Google Scholar 

  22. Bhattacharyya D, Koripella SC, Mitra A, Rajendran VB, Sinha B (2007) J Biosci 32:809–825

    Article  CAS  Google Scholar 

  23. Roy A, Panigrahi S, Bhatatcharyya M, Bhattacharyya D (2008) J Phys Chem B 112:3786–3796

    Article  CAS  Google Scholar 

  24. Sharma P, Mitra A, Sharma S, Singh H (2007) J Chem Sci 119:525–531

    Article  CAS  Google Scholar 

  25. Sponer JE, Leszczynski J, Sychrovsky V, Sponer J (2005) J Phys Chem B 109:18680–18689

    Article  CAS  Google Scholar 

  26. Sponer JE, Spackova N, Kulhanek P, Leszczynski J, Sponer J (2005) J Phys Chem B 109:2292–2301

    Article  CAS  Google Scholar 

  27. Sponer JE, Spackova N, Leszczynski J, Sponer J (2005) J Phys Chem B 109:11399–11410

    Article  CAS  Google Scholar 

  28. Sharma P, Mitra A, Sharma S, Singh H, Bhattacharyya D (2008) J Biomol Struct Dyn 25:709–732

    Article  CAS  Google Scholar 

  29. Sharma P, Singh H, Mitra A (2008) Lect Notes Comput Sci 5102:379–386

    Article  Google Scholar 

  30. Sharma P, Sponer JE, Sponer J, Sharma S, Bhattacharyya D, Mitra A (2010) J Phys Chem B 114:3307–3320

    Article  CAS  Google Scholar 

  31. Sharma P, Chawla M, Sharma S, Mitra A (2010) RNA 16:942–957

    Article  CAS  Google Scholar 

  32. Yildirim I, Turner DH (2005) Biochemistry 44:13225–13234

    Article  CAS  Google Scholar 

  33. Sponer J, Sponer JE, Petrov AI, Leontis NB (2010) J Phys Chem B 114:15723–15741

    Article  CAS  Google Scholar 

  34. Harada F, Nishimura S (1972) Biochemistry 11:301–308

    Article  CAS  Google Scholar 

  35. Farkas WR (1983) Nucleosides Nucleotides 2:1–20

    Article  CAS  Google Scholar 

  36. Nishimura S (1983) Prog Nucleic Acid Res Mol Biol 28:49–80

    Article  CAS  Google Scholar 

  37. Balasubramanian R, Seetharamulu PA (1981) J Mol Evol 17:27–30

    Article  CAS  Google Scholar 

  38. Andachi Y, Yamao F, Iwami M, Muto A, Osawa S (1987) Proc Natl Acad Sci USA 84:7398–7402

    Article  CAS  Google Scholar 

  39. Leontis NB, Stombaugh J, Westhof E (2002) Nucleic Acids Res 30:3497–531

    Article  CAS  Google Scholar 

  40. Leontis NB, Westhof E (2001) RNA 7:499–512

    Article  CAS  Google Scholar 

  41. Bakalarski G, Grochowski P, Kwiatkowski JS, Lesyng B, Leszczynski J (1996) Chem Phys 204:301–311

    Article  CAS  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1993) Phys Rev B 37:785–789

    Article  Google Scholar 

  44. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  45. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  46. Frisch MJ et al. (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  47. Venkateswarlu D, Lyngdoh RHD (1995) J Chem Soc Perkin Trans 2:839–846

    Google Scholar 

  48. Venkateswarlu D, Lyngdoh RHD, Bansal M (1997) J Chem Soc Perkin Trans 2:621–625

    Google Scholar 

  49. El Hassan MA, Calladine CR (1996) J Mol Biol 259:95–103

    Article  Google Scholar 

  50. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  51. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  52. Moras D, Comarmond MB, Fischer J, Weiss R, Thierry JC, Ebel JP, Giege R (1980) Nature 288:669–674

    Article  CAS  Google Scholar 

  53. Murphy FV IV, Ramakrishnan V (2004) Nat Struct Mol Biol 11:1251–1252

    Article  CAS  Google Scholar 

  54. Varani G, McClain WH (2000) EMBO Rep 1:18–23

    Article  CAS  Google Scholar 

  55. Ferre-D Amare AR, Zhou K, Doudna JA (1998) Nature 395:567–574

    Article  CAS  Google Scholar 

  56. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) Science 289:905–920

    Article  CAS  Google Scholar 

  57. Hung LW, Holbrook EL, Holbrook SR (2000) Proc Natl Acad Sci USA 97:5107–5112

    Article  CAS  Google Scholar 

  58. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D (1991) Science 252:1682–1689

    Article  CAS  Google Scholar 

  59. Pan B, Mitra SN, Sun L, Hart D, Sundaralingam M (1998) Nucleic Acids Res 26:5699–5706

    Article  CAS  Google Scholar 

  60. Antao VP, Tinoco I Jr (1992) Nucleic Acids Res 20:819–824

    Article  CAS  Google Scholar 

  61. Adamiak DA, Rypniewski WR, Milecki J, Adamiak RW (2001) Nucleic Acids Res 29:4144–4153

    Article  CAS  Google Scholar 

  62. Rypniewski WR, Vallazza M, Perbandt M, Klussmann S, Delucas LJ, Betzel C, Erdmann VA (2006) Acta Crystallogr D: Biol Crystallogr 62:659–664

    Article  Google Scholar 

  63. Hobza P, Sponer J (1999) Chem Rev 99:3247–3276

    Article  CAS  Google Scholar 

  64. Sponer J, Florian J, Leszczynski J, Hobza P (1996) J Biomol Struct Dyn 13:827–833

    Article  CAS  Google Scholar 

  65. Sponer J, Leszczynski J, Hobza P (1996) J Phys Chem 100:1965–1974

    Article  CAS  Google Scholar 

  66. Florian J, Hrouda V, Hobza P (1994) J Am Chem Soc 116:1457–1460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G. D. is grateful to the University Grants Commission, Government of India, New Delhi, for financial assistance through award of the Research Fellowship in Science for Meritorious Students. Financial assistance from the Special Assistance Program of the University Grants Commission to this Department is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Duncan Lyngdoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, G., Lyngdoh, R.H.D. Role of wobble base pair geometry for codon degeneracy: purine-type bases at the anticodon wobble position. J Mol Model 18, 3805–3820 (2012). https://doi.org/10.1007/s00894-012-1385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1385-4

Keywords

Navigation