Skip to main content
Log in

Evolution of the Genetic Code: The Ribosome-Oriented Model

  • Original Article
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

There are currently three major theories on the origin and evolution of the genetic code: the stereochemical theory, the coevolution theory, and the error-minimization theory. The first two assume that the genetic code originated respectively from chemical affinities and from metabolic relationships between codons and amino acids. The error-minimization theory maintains that in primitive systems the apparatus of protein synthesis was extremely prone to errors, and postulates that the genetic code evolved in order to minimize the deleterious effects of the translation errors. This article describes a fourth theory which starts from the hypothesis that the ancestral genetic code was ambiguous and proposes that its evolution took place with a mechanism that systematically reduced its ambiguity and eventually removed it altogether. This proposal is distinct from the stereochemical and the coevolution theories because they do not contemplate any ambiguity in the genetic code, and it is distinct from the error-minimization theory because ambiguity-reduction is fundamentally different from error-minimization. The concept of ambiguity-reduction has been repeatedly mentioned in the scientific literature, but so far it has remained only an abstract possibility because no model has been proposed for its mechanism. Such a model is described in the present article and may be the first step in a new approach to the study of the evolution of the genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbieri M (2012) Codepoiesis: the deep logic of life. Biosemiotics 5:297–299

    Article  Google Scholar 

  • Barbieri M (2015) Code biology: a new science of life. Springer, Dordrecht

    Book  Google Scholar 

  • Boivin A, Vendrely R (1947) Sur le rôle possible deux acides nucleic dans la cellule vivant. Experientia 3:32–34

    Article  Google Scholar 

  • Bollenbach T, Vetsigian K, Kishony R (2007) Evolution and multilevel optimization of the genetic code. Genome Res 17:401–404

    Article  Google Scholar 

  • Brachet J (1944) Embriologie chimique. Masson et Cie, Paris

    Google Scholar 

  • Brachet J (1946) Nucleic acids in the cell and the embryo. Symp Soc Exp Biol 1(213–215):222

    Google Scholar 

  • Burks AW (1970) Essays on cellular automata. University of Illinois Press, Urbana

    Google Scholar 

  • Crick FHC (1957) The structure of nucleic acids and their role in protein synthesis. Biochem Soc Symp 14:25–26

    Google Scholar 

  • Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  Google Scholar 

  • Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:1–37

    Article  Google Scholar 

  • Dounce AL (1952) Duplicating mechanism for peptide chain and nucleic acid synthesis. Enzymologia 15:251–258

    Google Scholar 

  • Dounce AL (1953) Nucleic acid template hypothesis. Nature 172:541

    Article  Google Scholar 

  • Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352

    Article  Google Scholar 

  • Dunnill P (1966) Triplet nucleotide-amino-acid pairing; a stereochemical basis for the division between protein and non-protein amino-acids. Nature 210:1267–1268

    Article  Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767

    Article  Google Scholar 

  • Fox GE (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol 2:a003483

    Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248

    Article  Google Scholar 

  • Gamow G (1954) Possible relation between deoxyribonucleic acid and protein structures. Nature 173:318

    Article  Google Scholar 

  • Gilis D, Massar S, Cerf NJ, Rooman M (2001) Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol 2:41–49

    Article  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  Google Scholar 

  • Higgs PG, Pudritz RE (2007) From protoplanetary disks to prebiotic amino acids and the origin of the genetic code. In: Pudritz RE, Higgs PG, Stone J (eds) Planetary systems and the origins of life, vol 3., Cambridge series in astrobiology. Cambridge University Press, Cambridge, pp 62–88

    Chapter  Google Scholar 

  • Hinegardner RT, Engelberg J (1963) Rationale for a universal genetic code. Science 142:1083–1085

    Article  Google Scholar 

  • Hoagland MB, Zamecnik PC, Stephenson ML (1957) Intermediate reactions in protein biosynthesis. Biochem Biophys Acta 24:215–216

    Article  Google Scholar 

  • Hou Y-M, Schimmel P (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333:140–145

    Article  Google Scholar 

  • Itzkovitz S, Alon U (2007) The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res 17:405–412

    Article  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  Google Scholar 

  • Jukes TH, Osawa S (1990) The genetic code in mitochondria and chloroplasts. Experientia 46:1149–1157

    Article  Google Scholar 

  • Jukes TH, Osawa S (1993) Evolutionary changes in the genetic code. Comp Biochem Physiol 106 B:489–494

    Google Scholar 

  • Khorana HG, Büchi H, Ghosh H et al (1966) Polynucleotide synthesis and the genetic code. Cold Spring Harb Symp Quant Biol 31:39–49

    Article  Google Scholar 

  • Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61(2):99–111

    Article  Google Scholar 

  • Kurland CG (1970) Ribosome structure and function emergent. Science 169:1171–1177

    Article  Google Scholar 

  • Maizels N, Weiner AM (1987) Peptide-specific ribosomes, genomic tags and the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:743–757

    Article  Google Scholar 

  • Melcher G (1974) Stereospecificity and the genetic code. J Mol Evol 3:121–141

    Article  Google Scholar 

  • Monod J (1970) Le Hasard et la Necéssité. Editions du Seuil, Paris. English edition: Monod J (1971) Chance and necessity (trans: Wainhouse A). Knopf, New York

  • Ninio J (1982) Molecular approaches to evolution. Pitman Books, London

    Google Scholar 

  • Niremberg M, Leder P (1964) RNA codewords and protein synthesis. Science 145:1399–1407

    Article  Google Scholar 

  • Niremberg M, Matthaei H (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602

    Article  Google Scholar 

  • Niremberg M, Caskey T, Marshal R et al (1966) The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol 31:11–24

    Article  Google Scholar 

  • Nishimura S, Jones DS, Khorana HG (1965) The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J Mol Biol 13:302–324

    Article  Google Scholar 

  • Nitta I, Kamada Y, Noda H et al (1998) Reconstitution of peptide bond formation. Science 281:666–669

    Article  Google Scholar 

  • Nomura M, Tissières A, Lengyel P (1974) Ribosomes, Cold Spring Harbor monograph series. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Novozhilov AS, Wolf YI, Koonin EV (2007) Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol Direct 2:24

    Article  Google Scholar 

  • Orgel LE (1973) The origins of life. Wiley, New York

    Google Scholar 

  • Osawa S (1995) Evolution of the genetic code. Oxford University Press, New York

    Google Scholar 

  • Pattee HH (2001) The physics of symbols: bridging the epistemic cut. BioSystems 60:5–21

    Article  Google Scholar 

  • Pelc SR, Weldon MGE (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209:868–870

    Article  Google Scholar 

  • Roberts RB (1958) Microsomal particles and protein synthesis. Pergamon Press, Washington

    Google Scholar 

  • Saxinger WC, Ponnamperuma C, Woese CR (1971) Evidence for the interaction of nucleotides with immobilized amino-acids and its significance for the origin of the genetic code. Nat New Biol 234:172–174

    Article  Google Scholar 

  • Schimmel P (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationship in the polypeptides and recognition of tRNAs. Ann Rev Biochem 56:125–158

    Article  Google Scholar 

  • Schimmel P, Giegé R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    Article  Google Scholar 

  • Shimizu M (1982) Molecular basis for the genetic code. J Mol Evol 18:297–303

    Article  Google Scholar 

  • Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 377–397

    Google Scholar 

  • Speyer J, Lengyel P, Basilio C et al (1963) Synthetic polynucleotides and the amino acid code. Cold Spring Harb Symp Quant Biol 28:559–567

    Article  Google Scholar 

  • Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci USA 103:10696–10701

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171:737–738. Genetical implications of the structure of deoxyribose nucleic acid. Nature 171:964-967

  • Woese CR (1965) Order in the genetic code. Proc Natl Acad Sci USA 54:71–75

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396

    Article  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article  Google Scholar 

  • Woese CR, Hinegardner RT, Engelberg J (1964) Universality in the genetic code. Science 144:1030–1031

    Article  Google Scholar 

  • Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14

    Article  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  Google Scholar 

  • Wong JT (1981) Coevolution of genetic code and amino acid biosynthesis. Trends Biochem Sci 6:33–36

    Article  Google Scholar 

  • Wong JT, Bronskill PM (1979) Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol 13:115–125

    Article  Google Scholar 

  • Yarus M (1988) A specific amino acid binding site composed of RNA. Science 240:1751–1758

    Article  Google Scholar 

  • Yarus M (1998) Amino acids as RNA ligands: a direct-RNA-template theory for the code’s origin. J Mol Evol 47:109–117

    Article  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Ann Rev Biochem 74:179–198

    Article  Google Scholar 

Download references

Acknowledgments

I am indebted to two anonymous referees whose comments greatly improved the initial version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbieri, M. Evolution of the Genetic Code: The Ribosome-Oriented Model. Biol Theory 10, 301–310 (2015). https://doi.org/10.1007/s13752-015-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-015-0225-z

Keywords

Navigation