Skip to main content
Log in

UV-spectroscopy, electronic structure and ozonolytic reactivity of sesquiterpenes: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Sesquiterpenes, one of the most important classes of biogenic volatile organic compounds, are potentially significant precursors to secondary organic aerosols (SOAs) in nature. The electronic structure of sesquiterpenes and their reactivity in the ozonolysis reaction were investigated by density functional theory. Results from the CIS calculations combined with an analysis of transition intensities show that the first peaks in the ultraviolet (UV) spectra for saturated and unsaturated isomers are σ–σ* and π–π* transitions, respectively. The UV absorption wavelength and absorbency are dictated by the electronic structures of these compounds. An increase in the number of double bonds and formation of a conjugated system expand the range of absorption in the UV region. An isomer with an endocyclic C = C bond presents weaker UV transition intensity than its corresponding exocyclic isomer. Results from conceptual DFT chemical reactivity indices of isomers suggest that no quantitative linear relationships between the structural changes and their reactivity, such as different degrees of unsaturated C = C double bonds, or the number of substituents attached to the C = C bond were discovered. In the ozonolysis reaction of sesquiterpenes, isomers with larger steric hindrance of substituents or endocyclic C = C bond possess higher chemical reactivity compared to isomers with smaller steric hindrandce or with an exocyclic C = C bond. These results are imperative to a better understanding of SOAs production mechanisms in the troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Indices for predicting the quality of leaving groups. Phys Chem Chem Phys 7:1918–1925

    Article  CAS  Google Scholar 

  2. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) The Cl-initiated oxidation of CH3C(O)OCH = CH2, CH3C(O)OCH2CH = CH2, and CH2 = CHC(O)O(CH2)3CH3 in the troposphere. Environ Sci Pollut Res 16:641–648

    Article  CAS  Google Scholar 

  3. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4450

    Article  CAS  Google Scholar 

  4. Chuong B, Davis M, Edwards M, Stevens PS (2002) Measurements of the kinetics of the OH + a-Pinene and OH + b-Pinene reactions at low pressure. Int J Chem Kinet 34:300–308

    Article  CAS  Google Scholar 

  5. Fraga BM (2002) Natural sesquiterpenoids. Nat Prod Rep 19:650–672

    Article  CAS  Google Scholar 

  6. Fu PQ, Kawamura K, Chen J, Barrie LA (2009) Isoprene, monoterpene, and sesquiterpene oxidation products in the high arctic aerosols during late winter to early summer. Environ Sci Technol 43:4022–4028

    Article  CAS  Google Scholar 

  7. Grayson DH (1998) Monoterpenoids. Nat Prod Rep 15:439–475

    Article  CAS  Google Scholar 

  8. Griffin RJ, Cocker DR III, Flagan RC, Seinfeld JH (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons. J Geophys Res 104:3555–3567

    Article  CAS  Google Scholar 

  9. Griffin RJ, Cocker DR, Seinfeld JH (1999) Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys Res Lett 26:2721–2724

    Article  CAS  Google Scholar 

  10. Griffin RJ, Cocker DR III, Seinfeld JH (1999) Incremental aerosol reactivity: application to aromatic and biogenic hydrocarbons. Environ Sci Technol 33:2403–2408

    Article  CAS  Google Scholar 

  11. Heiden AC, Hoffmann T, Kahl J, Kley D, Klockow D, Langebartels C, Mehlhorn H, Sandermann H, Schraudner M, Schuh G, Wildt J (1999) Emission of volatile prganic compounds from ozone-exposed plants. Ecol Appl 9:1160–1167

    Article  Google Scholar 

  12. Jacobson MC, Hansson H-C, Noone KJ, Charlson RJ (2000) Orangic atmospheric aerosols: review and state of the science. Rev Geophys 38:267–294

    Article  CAS  Google Scholar 

  13. Jaoui M, Sexton KG, Kamens RM (2004) Reaction of α-cedrene with ozone: mechanism, gas and particulate products distribution. Atmos Environ 38:2709–2725

    Article  CAS  Google Scholar 

  14. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123

    Article  CAS  Google Scholar 

  15. Kasali AA, Ekundayob O, Paula C, Konig WA (2002) epi-Cubebanes from Solidago canadensis. Phytochemistry 59:805–810

    Article  CAS  Google Scholar 

  16. Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  17. Kubala D, Drage EA, Al-Faydhi AME, Kocísek J, Papp P, Matejcík V, Mach P, Urban J, Limao-Vieira P, Hoffmann SV, Matejcík S, Mason NJ (2009) Electron impact ionisation and UV absorption study of α- and β-pinene. Int J Massspectrom 280:169–173

    Article  CAS  Google Scholar 

  18. Lee A, Goldstein AH, Keywood MD, Gao S, Varutbangkul V, Bahreini R, Ng NL, Flagan RC, Seinfeld JH (2006) Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J Geophys Res 111(D07):D07302

    Article  Google Scholar 

  19. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys Chim Sin 25:590–600

    CAS  Google Scholar 

  20. Nauduri D, Greenberg A (2009) Calculated ionization energies for a series of sesquiterpenes: comparisons with experimental vertical ionization energies and comments on related structure–activity relationships (SARs). Struct Chem 20:417–421. doi:10.1007/s1122400994312

    Article  CAS  Google Scholar 

  21. Nguyen TL, Winterhalter R, Moortgat G, Kanawati B, Peeters J, Vereecken L (2009) The gas-phase ozonolysis of β-caryophyllene (C15H24). Part II: a theoretical study. Phys Chem Chem Phys 11:4173–4183

    Article  CAS  Google Scholar 

  22. Novak I (2001) Electronic structure of terpenoids. J Org Chem 66:4728–4731

    Article  CAS  Google Scholar 

  23. Novak I, Kovac B (2005) Photoelectron spectroscopy of natural products: terpenes. Spectrochim Acta A 61:277–280

    Article  Google Scholar 

  24. Novak I, Kovac B, Kovacevic G (2002) Structure and stability of common sesquiterpenes. Spectrochim Acta, Part A 58:2223–2226

    Article  Google Scholar 

  25. Pariser R, Parr RG (1953) A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I J Chem Phys 21:466–471

    Article  CAS  Google Scholar 

  26. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  27. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  28. Parr RG, Szentpaly LV, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  29. Pfrang C, King M, Canosa-Mas CE, Wayne RP (2006) Gas-phase rate coefficients for the reactions of O(3P), S(3P), Se(3P), and Te(3P) with alkenes: application of perturbation frontier molecular orbital theory, correlations, and structure–activity relations (SARs). Int J Chem Kinet 38:351–356

    Article  CAS  Google Scholar 

  30. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Chem Chem Phys 52:997–1000

    CAS  Google Scholar 

  31. Shu YH, Atkinson R (1995) Atmospheric lifetimes and fates of a series of sesquiterpenes. J Geophys Res 100:7275–7281

    Article  CAS  Google Scholar 

  32. Vizuete W, Junquera V, Allen DT (2004) Sesquiterpene emissions and secondary organic aerosol fomation potentials for southeast Texas. Aerosol Sci Technol 38(S1):167–181

    CAS  Google Scholar 

  33. Wang W, Wang SL, Li L, Zhang DP, Wang YJ, Sheng GY, Fu JM (2008) Advances in biogenic secondary organic aerosols. Geochimica 37:77–86

    Google Scholar 

  34. Went FW (1960) Blue hazes in the atmosphere. Nature 187:641–643

    Article  Google Scholar 

  35. Williams DH, Fleming I (eds) (2009) Spectroscopic methods in organic chemistry. McGraw-Hill, New York

    Google Scholar 

  36. Winterhalter R, Herrmann F, Kanawati B, Nguyen TL, Peeters J, Vereeckenb L, Moortgat GK (2009) The gas-phase ozonolysis of b-caryophyllene (C15H24). Part I: an experimental study. Phys Chem Chem Phys 11:4152–4172

    Article  CAS  Google Scholar 

  37. Xia Y, Yin DL, Rong CY, Xu Q, Yin DH, Liu SB (2008) Impact of lewis acids on Diels-Alder reaction reactivity: a conceptual density functional theory study. J Phys Chem A 112:9970–9977

    Article  CAS  Google Scholar 

  38. Yao L, Ge MF, Qiao ZM, Sun Z, Wang DX (2006) Progresses of tropospheric chemistry of volatile organic compounds. Chemistry Bulletin 69(W049):1–7 (in Chinese)

    Google Scholar 

  39. Zerner MC (1991) Reviews in computational chemistry, vol 2. Semiempirical molecular orbital methods. Wiley-VCH, New York

    Google Scholar 

Download references

Acknowledgments

Financial support from the Earmarked Fund of the State Key Laboratory of Organic Geochemistry (No. SKLOG2009A04) and the National Natural Science Foundation of China (Nos. 40821003, 20733002 and 20873008) is greatly appreciated. The authors gratefully thank Dr. Liang Peng of the Department of Chemistry and Environment, South China Normal University for useful suggestions and stimulated discussions. This is contribution No. IS-1357 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Yongping Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, SX., Yu, JG. & Zeng, E.Y. UV-spectroscopy, electronic structure and ozonolytic reactivity of sesquiterpenes: a theoretical study. J Mol Model 18, 1455–1462 (2012). https://doi.org/10.1007/s00894-011-1160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1160-y

Keywords

Navigation