Skip to main content
Log in

Replica exchange molecular dynamics simulation of structure variation from α/4β-fold to 3α-fold protein

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Replica exchange molecular dynamics (REMD) simulation provides an efficient conformational sampling tool for the study of protein folding. In this study, we explore the mechanism directing the structure variation from α/4β-fold protein to 3α-fold protein after mutation by conducting REMD simulation on 42 replicas with temperatures ranging from 270 K to 710 K. The simulation began from a protein possessing the primary structure of GA88 but the tertiary structure of GB88, two G proteins with “high sequence identity.” Albeit the large Cα-root mean square deviation (RMSD) of the folded protein (4.34 Å at 270 K and 4.75 Å at 304 K), a variation in tertiary structure was observed. Together with the analysis of secondary structure assignment, cluster analysis and principal component, it provides insights to the folding and unfolding pathway of 3α-fold protein and α/4β-fold protein respectively paving the way toward the understanding of the ongoings during conformational variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  CAS  Google Scholar 

  2. Alexander PA, He Y, Chen Y, Orban J, Bryan PN (2009) A minimal sequence code for switching protein structure and function. Proc Natl Acad Sci 106:21149–21154

    Article  CAS  Google Scholar 

  3. Maaß A, Tekin ED, Schüller A, Palazoglu A, Reith D, Faller R (2010) Folding and unfolding characteristics of short beta strand peptides under different environmental conditions and starting configurations. Biochim Biophys Acta 1804:2003–2015

    Google Scholar 

  4. He Y, Chen Y, Alexander P, Bryan PN, Orban J (2008) NMR structures of two designed proteins with high sequence identity but different fold and function. Proc Natl Acad Sci 105:14412–14417

    Article  CAS  Google Scholar 

  5. Rose GD, Creamer TP (1994) Protein folding: predicting predicting. Proteins Struct Funct Genet 19:1–3

    Article  CAS  Google Scholar 

  6. Dalal S, Balasubramanian S, Regan L (1997) Protein alchemy: changing β-sheet into α-helix. Nat Struct Biol 4:548–552

    Article  CAS  Google Scholar 

  7. Yang W-Z, Ko T-P, Corselli L, Johnson RC, Yuan HS (1998) Conversion of a β-strand to an α-helix induced by a single-site mutation observed in the crystal structure of Fis mutant Pro26Ala. Protein Sci 7:1875–1883

    Article  CAS  Google Scholar 

  8. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  Google Scholar 

  9. Zhou R (2003) Trp-cage: folding free energy landscape in explicit water. Proc Natl Acad Sci 100:13280–13285

    Article  CAS  Google Scholar 

  10. Karplus M (1987) Molecular dynamics simulations of proteins. Phys Today 40:68–72

    Article  CAS  Google Scholar 

  11. Lei H, Wu C, Liu H, Duan Y (2007) Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations. Proc Natl Acad Sci 104:4925–4930

    Article  CAS  Google Scholar 

  12. Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophys J 94:L75–L77

    Article  CAS  Google Scholar 

  13. Pande VS, Rokhsar DS (1999) Molecular dynamics simulations of unfolding and refolding of a β-hairpin fragment of protein G. Proc Natl Acad Sci USA 96:9062–9067

    Article  CAS  Google Scholar 

  14. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  15. Zhou R, Berne BJ (2002) Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Proc Natl Acad Sci 99:12777–12782

    Article  CAS  Google Scholar 

  16. Case DA, Darden TA et al (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  17. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  18. Tsui V, Case DA (2001) Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolym (Nucleic Acid Sci) 56:275–291

    Article  CAS  Google Scholar 

  19. Levy RM, Zhang LY, Gallicchio E, Felts AK (2003) On the nonpolar hydration free energy of proteins: Surface area and continuum solvent models for the solute-solvent interaction energy. J Am Chem Soc 125:9523–9530

    Article  CAS  Google Scholar 

  20. Lwin TZ, Zhou R, Luo R (2006) Is Poisson-Boltzmann theory insufficient for protein folding simulations? J Chem Phys 124:34902–34907

    Article  Google Scholar 

  21. www.pdb.org, Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235-242

    Google Scholar 

  22. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  23. Uberuaga BP, Anghel M, Voter AF (2004) Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J Chem Phys 120:6363–6374

    Article  CAS  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  25. Mongan J (2004) Interactive essential dynamics. J Comput Aided Mol Des 18:433–436

    Article  CAS  Google Scholar 

  26. Alexander PA, He Y, Chen Y, Orban J, Bryan PN (2007) The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc Natl Acad Sci 104:11963–11968

    Article  CAS  Google Scholar 

  27. Pace NC, Scholtz MJ (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427

    Article  CAS  Google Scholar 

  28. Wang T, Wade RC (2006) Force field effects on a β-sheet protein domain structure in thermal unfolding simulations. J Chem Theor Comput 2:140–148

    Article  CAS  Google Scholar 

  29. Mittal J, Best RB (2010) Tackling force-field bias in protein folding simulations: Folding of villin HP35 and pin WW domains in explicit water. Biophys J 99:L26–L28

    Article  CAS  Google Scholar 

  30. Cheung MS, García AE, Onuchic JN (2002) Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci 99:685–690

    Article  CAS  Google Scholar 

  31. Geney R, Layten M, Gomperts R, Hornak V, Simmerling C (2006) Investigation of salt bridge stability in a generalized Born solvent model. J Chem Theor Comput 2:115–127

    Article  CAS  Google Scholar 

  32. Jang S, Kim E, Pak Y (2007) Direct folding simulation of α-Helices and β-hairpins based on a single all-atom force field with an implicit solvation model. Proteins Struct Funct Bioinf 66:53–60

    Article  CAS  Google Scholar 

  33. Nymeyer H, Garćia AE (2003) Simulation of the folding equilibrium of α-helical peptides: a comparison of the generalized Born approximation with explicit solvent. Proc Natl Acad Sci 100:13934–13939

    Article  CAS  Google Scholar 

  34. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  35. Mezei M (2010) Simulaid: a simulation facilitator and analysis program. J Comput Chem 31:2658–2668

    Article  CAS  Google Scholar 

  36. Lou H, Cukier RI (2006) Molecular dynamics of apo-adenylate kinase: a principal component analysis. J Phys Chem B 110:12796–12808

    Article  CAS  Google Scholar 

  37. Das A, Mukhopadhyay C (2007) Application of principal component analysis in protein unfolding: an all-atom molecular dynamics simulation study. J Chem Phys 127(1-8):165103

    Article  Google Scholar 

  38. Maisuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385:312–329

    Article  CAS  Google Scholar 

  39. Palazoglu A, Gursoy A, Arkun Y, Erman B (2004) Folding dynamics of proteins from denatured to native state: principal component analysis. J Comput Biol 11:1149–1168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DWZ is supported in part by Nanyang Technological University (NTU) start-up grant, and in part by Singapore Academic Research Fund (AcRF) Tier 1 Grant of M52110095. DWZ would like to acknowledge and thank NTU High Performance Computing (HPC) support and resources. YM is supported by National Natural Science Foundation of China (Grants No. 20803034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cα-RMSD of H1 (residue 9 to 23), H2 (residue 27 to 34) and H3 (residue 39 to 51) domain of the 3α-GA88 with reference to the NMR structure of GA88 (PDB code: 2JWS)4 at 304 K. (DOC 267 kb)

Fig. S2

Conformational evolution of the unfolding of α/4β-GA88 based on the temporal activity of the protein projected from five eigenvectors, i.e., PC at 270 K and 304 K for the first 15 ns. (DOC 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazim, R., Mei, Y. & Zhang, D. Replica exchange molecular dynamics simulation of structure variation from α/4β-fold to 3α-fold protein. J Mol Model 18, 1087–1095 (2012). https://doi.org/10.1007/s00894-011-1147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1147-8

Keywords

Navigation