Skip to main content
Log in

A DFT study on equilibrium geometries, stabilities, and electronic properties of small bimetallic Na-doped Au n (n = 1-9) clusters: comparison with pure gold clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A systematic study on the geometric structures, relative stabilities, and electronic properties of small bimetallic Au n Na (n = 1-9) clusters has been performed by means of first-principle density functional theory calculations at the PW91PW91 level. The results show that the optimized ground-state isomers adopt planar structures up to n = 5, and the Na-capped geometries are dominant growth patterns for n = 6-9. Dramatic odd-even alternative behaviors are obtained in the second-order difference of energies, fragmentation energies, highest occupied-lowest unoccupied molecular orbital energy gaps, and chemical hardness for both Au n Na and Au n+1 clusters. It is found that Au5Na and Au6 have the most enhanced stability. Here, the size evolutions of the theoretical ionization potentials are in agreement with available experimental data, suggesting a good prediction of the lowest energy structures in the present study. In addition, the charge transfer has been analyzed on the basis of natural population analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kayi H (2010) J Mol Model 16:1029–1038

    Article  CAS  Google Scholar 

  2. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403–407

    Article  CAS  Google Scholar 

  3. Guzman J, Carrettin S, Corma A (2005) J Am Chem Soc 127:3286–3287

    Article  CAS  Google Scholar 

  4. Tang Y, Wang SG, Li J (2010) J Mol Model. doi:10.1007/s00894-010-0793-6

    Google Scholar 

  5. Graciani J, Oviedo J, Sanz JF (2006) J Phys Chem B 110:11600–11603

    Article  CAS  Google Scholar 

  6. Koszinowski K, Schröder D, Schwarz H (2003) Chem Phys Chem 4:1233–1237

    Article  CAS  Google Scholar 

  7. Yuan DW, Gong XG, Wu RQ (2008) Phys Rev B 78:035441

    Article  Google Scholar 

  8. Yuan DW, Wang Y, Zeng Z (2005) J Chem Phys 112:114310

    Article  Google Scholar 

  9. Cottancin E, Lermé J, Gaudry M, Pellarin M, Vialle JL, Broyer M (2000) Phys Rev B 62:5179–5185

    Article  CAS  Google Scholar 

  10. Zhang H, Zelmon DE, Deng L, Liu HK, Teo BK (2001) J Am Chem Soc 123:11300–11301

    Article  CAS  Google Scholar 

  11. Li X, Kiran B, Cui LF, Wang LS (2005) Phys Rev Lett 95:253401

    Article  Google Scholar 

  12. Neukermans S, Janssens E, Tanaka H, Silverans RE, Lievens P (2003) Phys Rev Lett 90:033401

    Article  CAS  Google Scholar 

  13. Bürgel C, Reilly NM, Johnson GE, Mitrić R, Kimble ML, Castleman AW Jr, Bonačić-Koutecký V (2008) J Am Chem Soc 130:1694–1698

    Article  Google Scholar 

  14. Häkkinen H (2008) Chem Soc Rev 37:1847–1859

    Article  Google Scholar 

  15. Häkkinen H, Moseler M, Landman U (2002) Phys Rev Lett 89:033401

    Article  Google Scholar 

  16. Fernández EM, Soler JM, Garzón IL, Balbás LC (2004) Phys Rev B 70:165403

    Article  Google Scholar 

  17. Li XB, Wang HY, Yang XD, Zhu ZH, Tang YJ (2007) J Chem Phys 126:084505

    Article  Google Scholar 

  18. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994–10005

    Article  CAS  Google Scholar 

  19. Deka A, Deka RC (2008) J Mol Struct THEOCHEM 870:83–93

    Article  CAS  Google Scholar 

  20. Knight WD, Clemenger K, Heer WAD, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141–2143

    Article  CAS  Google Scholar 

  21. Antoine R, Rayane D, Allouche AR, Frécon MA, Benichou E, Dalby FW, Dugourd P, Broyer M, Guet C (1999) J Chem Phys 110:5568–5577

    Article  CAS  Google Scholar 

  22. Choi YC, Lee HM, Kim WY, Kwon SK, Nautiyal T, Cheng DY, Vishwanathan K, Kim KS (2007) Phys Rev Lett 98:076101

    Article  Google Scholar 

  23. Peterson KI, Dao PD, Farley RW, Castleman AW (1984) J Chem Phys 80:1780–1785

    Article  CAS  Google Scholar 

  24. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  25. Heer WAD (1993) Rev Mod Phys 65:611–676

    Article  Google Scholar 

  26. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2006) J Phys Chem A 110:4543–4554

    Article  CAS  Google Scholar 

  27. Joshi AM, Delgass WN, Thomson KT (2006) J Phys Chem B 110:23373–23387

    Article  CAS  Google Scholar 

  28. Ellis JE (2006) Inorg Chem 45:3167–3186

    Article  CAS  Google Scholar 

  29. Blaber MG, Arnold MD, Ford MJ (2010) J Phys Condens Matter 22:095501

    Article  CAS  Google Scholar 

  30. Tong GSM, Cheung ASC (2002) J Phys Chem A 106:11637–11643

    Article  CAS  Google Scholar 

  31. Stangassinger A, Knight AM, Duncan MA (1999) J Phys Chem A 103:1547–1552

    Article  CAS  Google Scholar 

  32. Pelton AD (1986) Bull Alloy Phase Diagr 7:136–139

    Article  CAS  Google Scholar 

  33. Zachwieja UZ (1993) Z Anorg Allg Chem 619:1095–1097

    Article  CAS  Google Scholar 

  34. Watson RE, Weinert M (1994) Phys Rev B 49:7148–7154

    Article  CAS  Google Scholar 

  35. Heiz U, Vayloyan A, Schumacher E (1996) J Phys Chem 100:15033–15040

    Article  CAS  Google Scholar 

  36. Heinebrodt M, Malinowski N, Tast F, Branz W, Billas IML, Martin TP (1999) J Chem Phys 110:9915–9921

    Article  CAS  Google Scholar 

  37. Heiz U, Vayloyan A, Schumacher E, Yeretzian C, Stener M, Gisdakis P, Rösch N (1996) J Chem Phys 105:5574–5585

    Article  CAS  Google Scholar 

  38. Baruah T, Blundell SA, Zope RR (2001) Phys Rev A 64:043202

    Article  Google Scholar 

  39. Majumder C, Kandalam AK, Jena P (2006) Phys Rev B 74:205437

    Article  Google Scholar 

  40. Ghanty TK, Banerjee A, Chakrabarti A (2010) J Phys Chem C 114:20–27

    Article  CAS  Google Scholar 

  41. Frisch MJ et al. (2004) Gaussian03, revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  42. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872

    Article  CAS  Google Scholar 

  43. Schwerdtfeger P, Dolg M, Schwarz WHE, Bowmaker GA, Boyd PDW (1989) J Chem Phys 91:1762–1774

    Article  CAS  Google Scholar 

  44. Perdew P, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  45. Piacente V, Gingerich KA (1977) High Temp Sci 9:189

    CAS  Google Scholar 

  46. Jackschath C, Rabin I, Schulze W (1992) Ber Bunsenges Phys Chem 96:1200–1204

    CAS  Google Scholar 

  47. Hoshino K, Naganuma T, Watanabe K, Nakajima A, Kaya K (1993) Chem Phys Lett 211:571–574

    Article  CAS  Google Scholar 

  48. Kappes MM, Schär M, Röthlisberger U, Yeretzian C, Schumacher E (1988) Chem Phys Lett 143:251–258

    Article  CAS  Google Scholar 

  49. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Education Fund of Education Ministry of Chain (No. 20050610011) and the National Natural Science Foundation of China (No. 10974138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yu Kuang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YF., Kuang, XY., Mao, AJ. et al. A DFT study on equilibrium geometries, stabilities, and electronic properties of small bimetallic Na-doped Au n (n = 1-9) clusters: comparison with pure gold clusters. J Mol Model 18, 329–338 (2012). https://doi.org/10.1007/s00894-011-1073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1073-9

Keywords

Navigation