Skip to main content
Log in

The Density Functional Theory Investigation on the Structural, Relative Stable and Electronic Properties of Bimetallic PbnSbn (n = 2–12) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Recently, bimetallic clusters have attracted a great deal of attention from research community because clusters yield intriguing properties ranging from the molecular and the bulk materials, which have extensive applications in nanomaterials. Clusters with tailored properties are governed by cluster size, geometrical structures, and elemental composition. Motivated by that we systematically investigated the structural, relative stable, and electronic properties of PbnSbn (n = 2–12) clusters by means of density functional theory. In this paper, the ground state structures, average binding energies, fragmentation energies, HOMO–LUMO gaps, and density of states were theoretically calculated. The results demonstrate that the large clusters adopt distorted ellipsoid structures with no symmetry. The average binding energies tend to be stable when cluster size n ≥ 4. Pb5Sb5 and Pb9Sb9 clusters are more chemically stable compared with the neighboring PbnSbn clusters, which may serve as the cluster assembled materials. The density of states of PbnSbn (n = 2–12) clusters moving toward more negative energy levels with the growing cluster size n, which also becoming more nonlocalized as the clusters size n increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. L. Polak, G. Gerber, J. Ho, and W. C. Lineberger (1992). J. Chem. Phys. 97, 8990–9000.

    Article  CAS  Google Scholar 

  2. H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A. J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen, and N. Zheng (2016). Nat. Commun. 7, 12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. I. M. L. Billas, A. Châtelain, and W. A. de Heer (1994). Science 265, 1682–1684.

    Article  CAS  PubMed  Google Scholar 

  4. O. A. Van and R. J. Saykally (1998). Chem. Rev. 98, 2313–2357.

    Article  Google Scholar 

  5. L. Belau, S. E. Wheeler, B. W. Ticknor, M. Ahmed, S. R. Leone, W. D. Allen, and M. A. Duncan (2007). J. Am. Chem. Soc. 129, 10229–10243.

    Article  CAS  PubMed  Google Scholar 

  6. J. Hutter, H. P. Luethi, and F. Diederich (1994). J. Am. Chem. Soc. 116, 750–756.

    Article  CAS  Google Scholar 

  7. M. Haertelt, J. T. Lyon, P. Claes, H. J. De, P. Lievens, and A. Fielicke (2012). J. Chem. Phys. 136, 114.

    Article  CAS  Google Scholar 

  8. K. D. Rinnen and M. L. Mandich (1992). Phys. Rev. Lett. 69, 1823–1826.

    Article  CAS  PubMed  Google Scholar 

  9. S. Heiles, S. Schäfer, and R. Schäfer (2011). J. Chem. Phys. 135, 034303.

    Article  CAS  PubMed  Google Scholar 

  10. W. Qin, W. C. Lu, Q. J. Zang, L. Z. Zhao, G. J. Chen, C. Z. Wang, and K. M. Ho (2010). J. Chem. Phys. 132, 214509.

    Article  CAS  PubMed  Google Scholar 

  11. S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, and R. Schäfer (2008). J. Phys. Chem. A 112, 12312.

    Article  CAS  PubMed  Google Scholar 

  12. B. Assadollahzadeh, S. Schäfer, and P. Schwerdtfeger (2010). J. Comput. Chem. 31, 929–937.

    CAS  PubMed  Google Scholar 

  13. H. Li, Y. Ji, F. Wang, S. F. Li, Q. Sun, and Y. Jia (2011). Phys. Rev. B 83, 075429.

    Article  CAS  Google Scholar 

  14. X.-P. Li, W.-C. Lu, Q.-J. Zang, G.-J. Chen, C. Z. Wang, and K. M. Ho (2009). J. Phys. Chem. A 113, 6217–6221.

    Article  CAS  PubMed  Google Scholar 

  15. R. K. Yoo, B. Ruscic, and J. Berkowitz (1992). J. Chem. Phys. 96, 6696–6709.

    Article  CAS  Google Scholar 

  16. X. Bai, Q. Zhang, A. Gao, and J. Yang (1009). Comput. Theor. Chem. 2013, 94–102.

    Google Scholar 

  17. X. Zhou, J. Zhao, X. Chen, and W. Lu (2005). Phys. Rev. A 72, 053203.

    Article  CAS  Google Scholar 

  18. R. O. Jones, O. Ahlstedt, J. Akola, and M. Ropo (2017). J. Chem. Phys. 146, 1291–12100.

    Google Scholar 

  19. T. M. Bernhardt, B. Kaiser, and K. Rademann (2002). Phys. Chem. Chem. Phys. 4, 1192–1200.

    Article  CAS  Google Scholar 

  20. X. Zhou, J. Zhao, X. Chen, and W. Lu (2005). Phys. Rev. A 72, 053203.

    Article  CAS  Google Scholar 

  21. J. J. Melko, U. Werner, R. Mitric, V. Bonacic-Koutecky, and A. W. Castleman Jr. (2011). J. Phys. Chem. A. 115, 10276–10280.

    Article  CAS  PubMed  Google Scholar 

  22. D. Schild, R. Pflaum, G. Riefer, and E. Recknagel (1988). Zeitschrift Für Physik D Atoms Molecules & Clusters 10, 329–335.

    Article  CAS  Google Scholar 

  23. S. Yahachi, Y. Kenzi, M. Kazuhiro, and N. Tamotsu (1982). Jpn. J. Appl. Phys. 21, L396.

    Article  Google Scholar 

  24. C. Rajesh and C. Majumder (2007). J. Chem. Phys. 126, 244704.

    Article  CAS  PubMed  Google Scholar 

  25. S. Schafer, S. Heiles, J. A. Becker, and R. Schafer (2008). J. Chem. Phys. 129, 044304.

    Article  CAS  PubMed  Google Scholar 

  26. V. Senz, T. Fischer, P. Oelssner, J. Tiggesbaumker, J. Stanzel, C. Bostedt, H. Thomas, M. Schoffler, L. Foucar, M. Martins, J. Neville, M. Neeb, T. Moller, W. Wurth, E. Ruhl, R. Dorner, H. Schmidt-Bocking, W. Eberhardt, G. Gantefor, R. Treusch, P. Radcliffe, and K. H. Meiwes-Broer (2009). Phys. Rev. Lett. 102, 138303.

    Article  CAS  PubMed  Google Scholar 

  27. C. Rajesh and C. Majumder (2008). J. Chem. Phys. 128, 024308.

    Article  CAS  PubMed  Google Scholar 

  28. X. Chen, K. Deng, C. Xiao, J. Chen, and D. E. Ellis (2011). Comput. Theor. Chem. 971, 73–76.

    Article  CAS  Google Scholar 

  29. M. Steinert, W. Wesch, A. Undisz, M. Rettenmayr, W. Nunes, R. Borges, M. Godinho, R. Rubinger, M. Carmo, and N. Sobolev (2008). J. Phys. D: Appl. Phys. 42, 035406.

    Article  CAS  Google Scholar 

  30. R. W. Farley, P. Ziemann, and A. W. C. Jr (1989). Zeitschrift Für Physik D Atoms Molecules & Clusters 14, 353–360.

    Article  CAS  Google Scholar 

  31. R. Wheeler, K. LaiHing, W. Wilson, J. Allen, R. King, and M. Duncan (1986). J. Am. Chem. Soc. 108, 8101–8102.

    Article  CAS  Google Scholar 

  32. K. F. Willey, K. Laihing, T. G. Taylor, and M. A. Duncan (1993). J. Phys. Chem. 97, (29), 7435–7440.

    Article  CAS  Google Scholar 

  33. D. Schild, R. Pflaum, K. Sattler, and E. Recknagel (1987). J. Phys. Chem. 91, 2649–2653.

    Article  CAS  Google Scholar 

  34. J. J. Melko, S. V. Ong, U. Gupta, J. U. Reveles, J. D’Emidio, S. N. Khanna, and A. W. Castleman (2010). Phys. Chem. C 114, 20907–20916.

    Article  CAS  Google Scholar 

  35. E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1993). Nature 366, 42–44.

    Article  CAS  Google Scholar 

  36. B. Wang, J. Zhao, X. Chen, D. Shi, and G. Wang (2005). Phys. Rev. A 71, 309–315.

    Google Scholar 

  37. M. Bo, Y. Wang, Y. Huang, W. Zhou, C. Li, and C. Q. Sun (2014). J. Mater. Chem. C 2, 6090.

    Article  CAS  Google Scholar 

  38. B. Song, W. Jiang, B. Yang, X. Chen, B. Xu, L. Kong, D. Liu, and Y. Dai (2016). Metall. Mater. Trans. A 47, 5214–5222.

    Article  CAS  Google Scholar 

  39. J. Deng, Y. Lei, S. Wen, and Z. Chen (2015). Int. J. Miner. Process. 140, 43–49.

    Article  CAS  Google Scholar 

  40. G. L. Zhang, H. K. Yuan, H. Chen, A. L. Kuang, Y. Li, J. Z. Wang, and J. Chen (2014). J. Chem. Phys. 141, 244304.

    Article  CAS  PubMed  Google Scholar 

  41. M. Zhang, L.-M. He, L.-X. Zhao, X.-J. Feng, and Y.-H. Luo (2009). J. Phys. Chem. C 113, 6491–6496.

    Article  CAS  Google Scholar 

  42. G. Gerber and G. Kuscher (1981). Chem. Phys. 60, 119–131.

    Article  CAS  Google Scholar 

  43. R. K. Yoo, B. Ruscic, and J. Berkowitz (1993). J. Chem. Phys. 99, 8445–8450.

    Article  CAS  Google Scholar 

  44. C. Rajesh, C. Majumder, M. G. R. Rajan, and S. K. Kulshreshtha (2005). Phys. Rev. B 72, 235411.

    Article  CAS  Google Scholar 

  45. M. E. Eberhart, R. C. O’Handley, and K. H. Johnson (1984). Phys. Rev. B 29, 1097–1100.

    Article  CAS  Google Scholar 

  46. X. Li, B. Kiran, L.-F. Cui, and L.-S. Wang (2005). Phys Rev. Lett. 95, 253401.

    Article  CAS  PubMed  Google Scholar 

  47. Y.-R. Zhao, X.-Y. Kuang, B.-B. Zheng, Y.-F. Li, and S.-J. Wang (2011). J. Phys. Chem. A 115, 569–576.

    Article  CAS  PubMed  Google Scholar 

  48. K. O. Alcantar-Medina, M. Herrera-Trejo, A. Tlahuice-Flores, S. Martinez-Vargas, J. Oliva, and A. I. Martinez (1099). Comput. Theor. Chem. 2017, 55–63.

    Google Scholar 

  49. D. Toprek and V. Koteski (1081). Comput. Theor. Chem. 2016, 9–17.

    Google Scholar 

  50. Y. Jin, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, J. Lv, C. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590.

    Article  CAS  PubMed  Google Scholar 

  51. X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. D. Xing (2016). J. Phys. Chem. C 120, 677–684.

    Article  CAS  Google Scholar 

  52. S. Safer, S. Mahtout, K. Rezouali, M. A. Belkhir, and F. Rabilloud (1090). Comput. Theor. Chem. 2016, 23–33.

    Google Scholar 

  53. W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241–1248.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Regional Foundation of the NSFC (51664032), General Program of the NSFC (51474116), Program of China Scholarships Council (No. 201808530022), Joint Foundation of the NSFC-Yunnan province (U1502271), Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province (2014HA003), Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology (2014RA4018), National Key Research and Development Program of China (2016YFC0400404), Youth Program of NSFC (51504115) and Program for Innovative Research Team in University of Ministry of Education of China (IRT_17R48), Science and Technology Talent Cultivation Plan of Yunnan Province, China (2017HB009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Chen, X., Yang, H. et al. The Density Functional Theory Investigation on the Structural, Relative Stable and Electronic Properties of Bimetallic PbnSbn (n = 2–12) Clusters. J Clust Sci 29, 1305–1311 (2018). https://doi.org/10.1007/s10876-018-1450-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1450-y

Keywords

Navigation