Skip to main content
Log in

The effect of a Pro28Thr point mutation on the local structure and stability of human galactokinase enzyme—a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Galactokinase is responsible for the phosphorylation of α-d-galactose, which is an important step in the metabolism of the latter. Malfunctioning of galactokinase due to a single point mutation causes cataracts and, in serious cases, blindness. This paper reports a study of the Pro28Thr point mutation using a variety of theories including molecular dynamics (MD), MM-PBSA/GBSA calculations and AIM analysis. Altered H-bonding networks were detected based on geometric and electron density criteria that resulted in local unfolding of the β-sheet secondary structure. Another consequence was the decrease in stability (5–7 kcal mol−1) around this region, as confirmed by ΔGbind calculations for the extracted part of the whole system. Local unfolding was verified by several other MD simulations performed with different duration, initial velocities and force field. Based on the results, we propose a possible mechanism for the unfolding caused by the Pro28Thr point mutation.

The role of Thr28 and a water molecule in the local unfolding process around the point mutation of human galactokinase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

WT:

Wild-type form of galactokinase

MT:

Point-mutated form of galactokinase

GALK:

Galactokinase

WTA:

Chain A of wild-type galactokinase

WTB:

Chain B of wild-type galactokinase

MTA:

Chain A of point-mutated galactokinase

MTB:

Chain B of point-mutated galactokinase

AIM:

Atoms in molecules theory

a.u.:

Atomic unit

bcp:

Bond critical points

PM:

Point mutation

ΔGbind :

Binding free energy

MTA2, MTA3, MTA4, MTA5:

Shorter (6 ns long) MD simulation of the MTA using different initial velocities

n.p.:

Not possible

ΔΔGbind :

Relative binding free energy

References

  1. Bordner AJ, Abagyan RA (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins Struct Func Bioinf 57:400–413

    Article  CAS  Google Scholar 

  2. Gilis D, Rooman M (1999) Prediction of stability changes upon single-site mutations using database-derived potentials. Theor Chem Acc 101:46–50

    CAS  Google Scholar 

  3. Carlsson P, Koehler KF, Nilsson L (2005) Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization. Mol Endocrinol 19:1960–1977

    Article  CAS  Google Scholar 

  4. Sneddon SF, Tobias DJ (1992) The role of packing interactions in stabilizing folded proteins. Biochemistry 31:2842–2846

    Article  CAS  Google Scholar 

  5. Dang LX, Merz KM, Kollman PA (1989) Free-energy calculations on protein stability: Thr-1573Val-157 mutation of T4 lysozyme. J Am Chem Soc 111:8505–8508

    Article  CAS  Google Scholar 

  6. Piana S, Laio A, Marinelli F, Van Troys M, Bourry D, Ampe Ch, Martins JC (2008) Predicting the effect of a point mutation on a protein fold: the villin and advillin headpieces and their Pro62Ala mutants. J Mol Biol 375:460–470

    Article  CAS  Google Scholar 

  7. Sahai MA, Viskolcz B, Pai EF, Csizmadia IG (2007) Quantifying the intrinsic effects of two point mutation models of proline proline diamino acid diamide: a first-principle computational study. J Phys Chem B 111:11592–11602

    Article  CAS  Google Scholar 

  8. Gitzelmann R, Hansen RG (1974) Galactose biogenesis and disposal in galactosemics. Biochim Biophys Acta 372:374–378

    CAS  Google Scholar 

  9. Holden HM, Thoden JB, Timson DJ, Reece RJ (2004) Galactokinase: structure, function and role in type II galactosemia. Cell Mol Life Sci 61:2471–2484

    Article  CAS  Google Scholar 

  10. Kinoshita JH, Dikmak E, Satoh K, Merola L (1962) Osmotic changes caused by accumulation of dulcitol in lenses of rats fed With galactose. Nature 194:1085–1087

    Article  CAS  Google Scholar 

  11. Tsakiris S, Schulpis KH, Marinou K, Behrakis P (2004) Protective effect of l-cysteine and glutathione on the modulated suckling rat brain Na+, K + ATPase and Mg2 + ATPase activities induced by the in vitro galactosaemia. Pharmacol Res 49:475–479

    Article  CAS  Google Scholar 

  12. Thoden JB, Timson DJ, Reece RJ, Holden HM (2005) Molecular structure of human galactokinase—implications for type II galactosemia. J Biol Chem 280:9662–9670

    Article  CAS  Google Scholar 

  13. Timson DJ, Reece RJ (2003) Functional analysis of disease-causing mutations in human galactokinase. Eur J Biochem 270:1767–1774

    Article  CAS  Google Scholar 

  14. Nowicka A, Mackiewicz P, Dudkiewicz M, Mackiewicz D, Kowalczuk M, Cebrat S, Dudek MR (2003) In: Sloot PMA et al (eds) Correlation between mutation pressure, selection pressure, and occurrence of amino acids. ICCS, LNCS 2658:650–657

  15. Kalaydjieva LV, Perez-Lezaun A, Angelicheva D, Onengut S, Dye D, Bosshard NU, Jordanova A, Savov A, Yanakiev P, Kremensky I, Radeva B, Hallmayer J, Markov A, Nedkova V, Tournev I, Aneva L, Gitzelmann R (1999) A founder mutation in the GK1 gene is responsible for galactokinase deficiency in Roma (Gypsies). Am J Hum Genet 65:1299–1307

    Article  CAS  Google Scholar 

  16. Hunter M, Heyer E, Austerlitz F, Angelicheva D, Nedkova V, Briones P, Gata A, De Pablo R, Laszlo A, Bosshard L, Gitzelmann R, Tordai A, Kalmar L, Szalai C, Balogh I, Lupu C, Corches A, Popa G, Perez-Lezaun A, Kalaydjieva LV (2002) The P28 mutation in the GALK1 gene accounts for galactokinase deficiency in Roma (Gypsy) patients across Europe. Pediatr Res 51:602–606

    Article  CAS  Google Scholar 

  17. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33:W306–W310

    Article  CAS  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  19. Berman H, Henrick K, Nakamura H (2003) Announcing the Worldwide Protein Data Bank. Nat Struct Biol 10:980

    Article  CAS  Google Scholar 

  20. Molecular Operating Environment (2007) C.C.G. Inc, Montreal, Quebec, Canada

  21. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Pdb2Pqr: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    Article  CAS  Google Scholar 

  22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  23. MacKerell A, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  24. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  Google Scholar 

  25. Beglov D, Roux B (1994) Finite representation of an infinite bulk system—solvent boundary potential for computer-simulations. J Chem Phys 100:9050–9063

    Article  CAS  Google Scholar 

  26. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC'06

  27. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  28. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N × Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  29. Caves LSD, Evanseck JD, Karplus M (1998) Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci 7:649–666

    CAS  Google Scholar 

  30. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field forpProteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  31. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  32. Bader RFW (1991) A quantum-theory of molecular-structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  33. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J Am Chem Soc 120:9401–9409

    Article  CAS  Google Scholar 

  34. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  35. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  36. Brooks BR, Janežič D, Karplus M (1995) Harmonic analysis of large system. I. Methodology. J Comput Chem 16:1522–1542

    Article  CAS  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  38. Kabsch W, Sander C (1983) Dictionary of protein secondary structure—pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  39. Mezei M (2010) Simulaid: a simulation facilitator and analysis program. J Comput Chem 31:2658–2668

    Article  CAS  Google Scholar 

  40. Tobias DJ, Sneddon SF, Brooks CL (1992) Stability of a model beta-sheet in water. J Mol Biol 227:1244–1252

    Article  CAS  Google Scholar 

  41. Sneddon SF, Tobias DJ, Brooks CL (1989) Thermodynamics of amide hydrogen-bond formation in polar and apolar solvents. J Mol Biol 209:817–820

    Article  CAS  Google Scholar 

  42. Seshasayee A (2005) High-temperature unfolding of a Trp-cage mini-protein: a molecular dynamics simulation study. Theor Biol Med Model 2:7–11

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by “Társadalmi Megújulás Operatív Program” (TÁMOP-4.2.1/B-09/1/KONV-2010-0005). The authors thank M. Labádi for technical support at the High Performance Computing Centre of the University of Szeged. The help of Methos L. Müller in the preparation of the graphics is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Jójárt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 2088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jójárt, B., Szőri, M., Izsák, R. et al. The effect of a Pro28Thr point mutation on the local structure and stability of human galactokinase enzyme—a theoretical study. J Mol Model 17, 2639–2649 (2011). https://doi.org/10.1007/s00894-011-0958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0958-y

Keywords

Navigation