Journal of Molecular Modeling

, Volume 17, Issue 9, pp 2259–2264 | Cite as

Crystal and electronic structures and high-pressure behavior of AgSO4, a unique narrow band gap antiferromagnetic semiconductor: LDA(+U) picture

  • Mariana DerzsiEmail author
  • Juliusz Stasiewicz
  • Wojciech Grochala
Original Paper


We demonstrate that DFT calculations performed with the local density approximation (LDA) allow for significantly better reproduction of lattice constants, the unit cell volume and the density of Ag(II)SO4 than those done with generalized gradient approximation (GGA). The LDA+U scheme, which accounts for electronic correlation effects, enables the accurate prediction of the magnetic superexchange constant of this strongly correlated material and its band gap at the Fermi level. The character of the band gap places the compound on the borderline between a Mott insulator and a charge transfer insulator. The size of the band gap (0.82 eV) indicates that AgSO4 is a ferrimagnetic semiconductor, and possibly an attractive material for spintronics. A bulk modulus of 27.0 GPa and a compressibility of 0.037 GPa–1 were determined for AgSO4 from the third-order Birch–Murnaghan isothermal equation of state up to 20 GPa. Several polymorphic types compete with the ambient pressure P-1 phase as the external pressure is increased. The P-1 phase is predicted to resist pressure-induced metallization up to at least 20 GPa.


Despite its more simplified character, the local density approximation allows for much better reproduction of many microscopic parameters of Ag(II)SO4 than the more sophisticated generalized gradient approximation


Density functional theory Sulfate Mixed valence Silver Solid state 



The project “Quest for Superconductivity in Crystal-Engineered Higher Fluorides of Silver” is operated by the Foundation for Polish Science’s TEAM program, and co-financed by the EU European Regional Development Fund.


  1. 1.
    Grochala W, Hoffmann R (2001) Angew Chem Int Ed 40:2743–2781Google Scholar
  2. 2.
    Grochala W (2003) ChemPhysChem 4:997–1001Google Scholar
  3. 3.
    McLain SE (2006) Nat Mater 5:561–566CrossRefGoogle Scholar
  4. 4.
    Grochala W (2006) Nat Mater 5:513–514CrossRefGoogle Scholar
  5. 5.
    Malinowski PJ, Derzsi M, Gaweł B, Łasocha W, Jagličić Z, Mazej Z, Grochala W (2010) Angew Chem Int Ed 49:1683–1686Google Scholar
  6. 6.
    Blöch PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  7. 7.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  8. 8.
    Mazej Z, Goreshnik E, Jagličić Z, Gaweł B, Łasocha W, Grzybowska D, Jaroń T, Kurzydłowski D, Malinowski PJ, Koźminski W, Szydłowska J, Leszczyński P, Grochala W (2009) Cryst Eng Comm 11:1702–1710Google Scholar
  9. 9.
    Kurzydłowski D, Derzsi M, Budzianowski A, Jagličić Z, Koźminski W, Mazej Z, Grochala W (2010) Eur J Inorg Chem 2919-2925Google Scholar
  10. 10.
    Noodleman L, Norman JG (1979) J Chem Phys 70:4903–4906CrossRefGoogle Scholar
  11. 11.
    Derzsi M, Dymkowski K, Grochala W (2010) Inorg Chem 49:2735–2742CrossRefGoogle Scholar
  12. 12.
    Barrera GD (2005) Chem Phys 317:119–129Google Scholar
  13. 13.
    Murnaghan FD (1944) Proc Nat Acad Sci 30:244–247Google Scholar
  14. 14.
    Birch F (1947) Phys Rev 71:809–824Google Scholar
  15. 15.
    Kumar M (1996) Phys Status Solidi B 196:209–212Google Scholar
  16. 16.
    Romiszewski J, Grochala W, Stolarczyk L (2006) J Phys Condens Matter 19(13):116206Google Scholar
  17. 17.
    Johnson M, Silsbee RH (1985) Phys Rev Lett 55:1790–1793Google Scholar
  18. 18.
    Reinert F, Steiner P, Hufner S, Schmitt H, Fink J, Knuofer M, Sandl P, Bertel E (1995) Z Phys B 97:83–93Google Scholar
  19. 19.
    Grochala W, Feng J, Hoffmann R, Ashcroft NW (2007) Angew Chem Int Ed 46:3620–3642Google Scholar
  20. 20.
    Bartels RA, Smith PA (1973) Phys Rev B 7:3885–3892Google Scholar
  21. 21.
    Liu ZJ, Du YX, Zhang XL, Qi JH, Tian LN, Guo Y (2010) Phys Status Solidi B 247:157–162Google Scholar
  22. 22.
    Gilev SD, Trubachev AM (1999) Phys Status Solidi B 211:379–383Google Scholar
  23. 23.
    Fukunaga O, Yamaoka S (1979) Phys Chem Miner 5:167–177Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mariana Derzsi
    • 1
    Email author
  • Juliusz Stasiewicz
    • 2
  • Wojciech Grochala
    • 1
    • 2
  1. 1.ICMUniversity of WarsawWarsawPoland
  2. 2.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations