Skip to main content
Log in

Homology model and docking studies on porcine β2 adrenoceptor: description of two binding sites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The affinity of the classical β2 adrenoceptor-selective inverse agonist ICI118,551 is notoriously lower for porcine β2 adrenoceptors (p2βAR) than for human β2 adrenoceptors (hβ2AR) but molecular mechanisms for this difference are still unclear. Homology 3-D models of pβ2AR can be useful in predicting similarities and differences, which might in turn increase the comparative understanding of ligand interactions with the hβ2AR. In this work, the pβ2AR amino acid sequence was used to carry out homology modeling. The selected pβ2AR 3-D structure was structurally and energetically optimized and used as a model for further theoretical study. The homology model of pβ2AR has a 3-D structure very similar to the crystal structures of recently studied hβ2AR. This was also corroborated by sequence identity, RMSD, Ramachandran map, TM-score and docking results. Upon performing molecular docking simulations with the AutoDock4.0.1 program on pβ2AR, it was found that a set of well-known β2AR ligands reach two distinct binding sites on pβ2AR. Whereas one of these sites is similar to that reported on the hβ2AR crystal structure, the other can explain some important experimental observations. Additionally, the theoretical affinity estimated for ICI118,551 closely agrees with affinities estimated from experimental in vitro data. The experimental differences between the human/porcine β2ARs in relation to ligand affinity can in part be elucidated by observations in this molecular modeling study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson GP (2006) Current issues with beta2-adrenoceptor agonists: pharmacology and molecular and cellular mechanisms. Clin Rev Allergy Immunol 31:119–130

    Article  CAS  Google Scholar 

  2. Moody DE, Hancock DL, Anderson DB (2000) Phenetahnolamine repartitioning agents. In: D’Mello JPF (ed) Farma animal metabolism and nutrition. CAB International, Wallingford, pp 65–96

    Chapter  Google Scholar 

  3. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  Google Scholar 

  4. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  5. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8. A structure of the human beta2-adrenergic receptor. Structure 16:897–905

    Article  CAS  Google Scholar 

  6. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) 7TM engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  CAS  Google Scholar 

  7. Shukla AK, Sun J, Lefkowitz RJ (2008) Crystallizing thinking about the β2-adrenergic receptor. Mol Pharmacol 73:1333–1338

    Article  CAS  Google Scholar 

  8. Costanzi S (2008) On the applicability of 7TM models to computer-aided drug discovery: a comparison between in silico and crystal structure of the β2-adrenergic receptor. J Med Chem 51:2907–2914

    Article  CAS  Google Scholar 

  9. Topiol S, Sabio M (2008) Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. Bioorg Med Chem Lett 18:1598–1602

    Article  CAS  Google Scholar 

  10. De Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonist of the β2 adrenergic receptor. J Med Chem 51:4978–4985

    Article  Google Scholar 

  11. Hausch F (2008) Betablockers at work: the crystal structure of the beta2-adrenergic receptor. Angew Chem Int Ed Engl 47:3314–3316

    Article  CAS  Google Scholar 

  12. Canning BJ, Chou Y (2008) Using guinea pigs in studies relevant to asthma and COPD. Pulm Pharmacol Ther 21:702–720

    Article  CAS  Google Scholar 

  13. Soriano-Ursúa MA, Trujillo-Ferrara J, Correa-Basurto J (2009) Homology modeling and flex-ligand docking studies on the guinea pig β2 adrenoceptor: structural and experimental similarities/ differences with the human β2. J Mol Model 15:1203–1211

    Article  Google Scholar 

  14. Mustafi D, Palczewski K (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75:1–12

    Article  CAS  Google Scholar 

  15. Fatakia SN, Costanzi S, Chow CC (2009) Computing highly correlated positions using mutual information and graph theory for G protein-coupled receptors. PLoS ONE 4:e4681

    Article  Google Scholar 

  16. Römpler H, Stäubert C, Thor D, Schulz A, Hofreiter M, Schöneberg TG (2007) Protein-coupled time travel: evolutionary aspects of 7TM research. Mol Interv 7:17–25

    Article  Google Scholar 

  17. Burgisser E, Hancock AA, Lefkowitz RJ, Delean A (1981) Anomalous equilibrium binding properties of high-affinity racemic radioligands. Mol Pharmacol 19:205–216

    CAS  Google Scholar 

  18. Liang W, Mills S (2001) Profile of ligand binding to the porcine β2 adrenergic receptor. J Anim Sci 79:877–883

    CAS  Google Scholar 

  19. Soriano-Ursúa MA, Trujillo-Ferrara JG, Correa-Basurto J (2010) Scope and difficulty in generating theoretical insights regarding ligand recognition and activation of the beta 2 adrenergic receptor. J Med Chem 53:923–932

    Article  Google Scholar 

  20. Liang W, Bidwell CA, Williams SK, Mills SE (1997) Rapid communication: molecular cloning of the porcine beta 2-adrenergic receptor gene. J Anim Sci 75:2824

    CAS  Google Scholar 

  21. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

  22. Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 8:108–117

    Article  Google Scholar 

  23. Wu S, Skolnick J, Zhang Y (2007) Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 5:17

    Article  Google Scholar 

  24. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The Swiss-model workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  25. Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  Google Scholar 

  26. Guex N, Peitsch MC (1997) Swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  27. Chen CC, Hwang JK, Yang JM (2006) (PS)2: protein structure prediction server. Nucleic Acids Res 34:W152–W157

    Article  CAS  Google Scholar 

  28. Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768:794–807

    Article  CAS  Google Scholar 

  29. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57:702–710

    Article  CAS  Google Scholar 

  30. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  CAS  Google Scholar 

  31. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  32. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309

    Article  CAS  Google Scholar 

  33. Soriano-Ursúa MA, Valencia-Hernández I, Arellano-Mendoza MG, Correa-Basurto J, Trujillo-Ferrara JG (2009) Synthesis, pharmacological and in silico evaluation of 1-(4-di-hydroxy-3, 5-dioxa-4-borabicyclo[4.4.0]deca-7, 9, 11-trien-9-yl)-2-(tert-butyl-amino) etha-nol, a compound designed to act as a β2 adrenoceptor agonist. Eur J Med Chem 44:2840–2846

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 98, Version A.7. Gaussian Inc, Pittsburgh, PA

  35. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  Google Scholar 

  36. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart E, Belew RK, Olson JA (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  37. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  39. Katritch V, Reynolds KA, Cherezov V, Hanson MA, Roth CB, Yeager M, Abagyan R (2009) Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J Mol Recognit 22:307–318

    Article  CAS  Google Scholar 

  40. Soriano-Ursúa MA, Trujillo-Ferrara JG, Correa-Basurto J (2010) Docking studies on a refined human β2 adrenoceptor model yield theoretical affinity values in function with experimental values for R-ligands, but not for S-antagonists. J Mol Model 16:401–409

    Article  Google Scholar 

  41. Audet M, Bouvier M (2008) Insights into signaling from the beta2-adrenergic receptor structure. Nat Chem Biol 4:397–403

    Article  CAS  Google Scholar 

  42. Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30:249–259

    Article  CAS  Google Scholar 

  43. Green SA, Rathz DA, Schuster AJ, Liggett SB (2001) The Ile164 beta(2)-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to G(s). Eur J Pharmacol 421:141–147

    Article  CAS  Google Scholar 

  44. Green SA, Cole G, Jacinto M, Innis M, Liggett SB (1993) A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121

    CAS  Google Scholar 

  45. Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B (2005) Probing the β2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonist and partial agonists. J Biol Chem 280:22165–22171

    Article  CAS  Google Scholar 

  46. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    Article  CAS  Google Scholar 

  47. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28:397–406

    Article  CAS  Google Scholar 

  48. Kaumann AJ, Molenaar P (2008) The low-affinity site of the beta1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118:303–336

    Article  CAS  Google Scholar 

  49. Heubach JF, Ravens U, Kaumann AJ (2004) Epinephrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. Mol Pharmacol 65:1313–1322

    Article  CAS  Google Scholar 

  50. Battacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand stabilized conformational states of human beta 2 adrenergic receptor: insight into G protein coupled receptor activation. Biophys J 94:2027–2042

    Article  Google Scholar 

  51. Rubenstein LA, Zauhar RJ, Lanzara RG (2006) Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation. J Mol Graph Model 25:396–409

    Article  CAS  Google Scholar 

  52. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE (2009) Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci USA 106:4689–4694

    Article  CAS  Google Scholar 

  53. Huber T, Menon S, Sakmar TP (2009) Structural basis for ligand binding and specificity in adrenergic receptors: implications for 7TM-targeted drug discovery. Biochemistry 47:11013–11023

    Article  Google Scholar 

  54. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  Google Scholar 

  55. Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2 adrenergic receptor ligands towards adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    Article  CAS  Google Scholar 

  56. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  CAS  Google Scholar 

  57. Chelikani P, Hornak V, Eilers M, Reeves PJ, Smith SO, RajBhandary UL, Khorana HG (2007) Role of group-conserved residues in the helical core of beta2-adrenergic receptor. Proc Natl Acad Sci USA 104:7027–7032

    Article  CAS  Google Scholar 

  58. Fraser CM (1989) Site-directed mutagenesis of β-Adrenergic receptor. J Biol Chem 264:9266–9270

    CAS  Google Scholar 

  59. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445

    Article  CAS  Google Scholar 

  60. Baker JG, Hall IP, Hill SJ (2002) Pharmacological characterization of CGP12177 at the human beta(2) adrenoceptor. Br J Pharmacol 137:400–408

    Article  CAS  Google Scholar 

  61. Jaakola VP, Lane JR, Lin JY, Katritch V, Ijzerman AP, Stevens RC (2010) Ligand binding and subtype selectivity of the human A(2A) adenosine receptor: identification and characterization of essential amino acid residues. J Biol Chem 285:13032–13044

    Article  CAS  Google Scholar 

  62. Hoffmann C, Leitz MR, Oberdorg-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human β-adrenergic receptor subtypes – characterization of stably transfected in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 369:151–159

    Article  CAS  Google Scholar 

  63. Baker JG (2005) The selectivity of β-adrenoceptor antagonists at the human β1-, β2- and β3-adrenoceptors. Br J Pharmacol 144:317–322

    Article  CAS  Google Scholar 

  64. Sillence MN, Hooper J, Zhou GH, Liu Q, Munn KJ (2005) Characterization of porcine beta1- and beta2-adrenergic receptors in heart, skeletal muscle, and adipose tissue, and the identification of an atypical beta-adrenergic binding site. J Anim Sci 83:2339–2348

    CAS  Google Scholar 

  65. Yamanishi T, Chapple CR, Yasuda K, Yoshida K, Chess-Williams R (2003) The functional role of beta-adrenoceptor subtypes in mediating relaxation of pig urethral smooth muscle. J Urol 170:2508–2511

    Article  Google Scholar 

  66. Galindo-Tovar A, Vargas ML, Kaumann AJ (2010) Function of cardiac β1- and β2-adrenoceptors of newborn piglets: role of phosphodiesterases PDE3 and PDE4. Eur J Pharmacol 638:99–107

    Article  CAS  Google Scholar 

  67. Heubach JF, Trebeb T, Wettwer E, Himmel HM, Michel MC, Kaumann AJ, Koch WJ, Harding SE, Ravens U (1999) L-type Ca2+ current and contractility in ventricular myocytes from mice overexpressing the cardiac β2-adrenoceptor. Cardiovasc Res 42:173–182

    Article  CAS  Google Scholar 

  68. Kaumann AJ, Lemoine H (1987) β2-adrenoceptor-mediated positive inotropic effects of adrenaline in human ventricular myocardium. Quantitative discrepancies with binding and adenylate cyclase stimulation. Naunyn Schmiedebergs Arch Pharmacol 335:403–411

    Article  CAS  Google Scholar 

  69. Buxton BF, Jones CR, Molenaar P, Summers RJ (1987) Characterization and autoradiographic localization of beta-adrenoceptor subtypes in human cardiac tissues. Br J Pharmacol 92:299–310

    CAS  Google Scholar 

  70. Gille E, Lemoine H, Ehle B, Kaumann AJ (1985) The affinity of (-)-propanolol for β1- and β2-adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. Naunyn Schmiedebergs Arch Pharmacol 331:60–70

    Article  CAS  Google Scholar 

  71. Lemoine H, Schönell H, Kaumann AJ (1988) Contribution of β1- and β2-adrenoceptors of human atrium and ventricle to the effects of noradrenaline and adrenaline as assessed with (-)-atenolol. Br J Pharmacol 95:55–66

    CAS  Google Scholar 

  72. Chong JK, Chess-Williams R, Peachell PT (2002) Pharmacological characterization of the β-adrenoceptor expressed by human mast cells. Eur J Pharmacol 437:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the scholarships and financial support by the Consejo Nacional de Ciencia y Tecnología (Grant 62488), Comisión de Fomento de Actividades Académicas, y Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional provided to MASU, JTF and JCB. Finally, we wish to thank Dr. Vsevolod Katritch for sharing the coordinates of his S-carazolol-hβ2AR model for this study with us, and Bruce Allan Larsen for his critical reading of the manuscript. The hardware used in this study was purchased with INNOVAPyME program support (110703 and 139391) provided to Instituto Politécnico Nacional and Laboratorio Médico Químico Biológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin A. Soriano-Ursúa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The pβ2AR models. (DOC 37 kb)

Suppl. Fig. 1

Amino acids alignment of pβ2AR and hβ2AR (JPEG 402 kb)

High resolution image file (TIFF 111 kb)

Suppl. Fig. 2

(a) Ramachandran plot and (b) outlier amino acids depicted as blue beads on the refined pβ2AR (residues 30 to 230 and 267 to 345). Five amino acids included in the main binding site are shown as red spheres. (JPEG 248 kb)

High resolution image file (TIFF 198 kb)

Suppl. Fig. 3

The sites availability at pβ2AR or hβ2AR reported by Q-site finder server. Porcine β2AR (at the center) and comparison with the crystallized conformation of hβ2AR (on left) and after 600 ns of molecular dinamycs simulation (from reference 53). (JPEG 242 kb)

High resolution image file (TIFF 241 kb)

Suppl. Fig. 4

Amino acids with which S,S-ICI118551 interacts on both, pβ2AR and hβ2AR. The estimated pKd of each complex is in red numbers. (a) On rigid_pβ2AR-site 2, (b) on rigid_pβ2AR-site 1, (c) on flexibleTM5_pβ2AR (d) on rigid_our_hβ2AR, (e) on flexibleTM5_our_hβ2AR, (f) on rigid_byKatritch_hβ2AR (g) on flexibleTM5_ byKatritch_hβ2AR. (JPEG 1444 kb)

High resolution image file (TIFF 1371 kb)

Suppl. Fig. 5

Linear regression for experimental vs. theoretical pKd values showed in Fig. 2 (as filled rhombs and filled circles, respectively). Values for ICI118,551 and salbutamol were considered as outliers for building this chart. (JPEG 52 kb)

High resolution image file (TIFF 14 kb)

Suppl. Fig. 6

The impact of TM5-flexibility on the affinity prediction complexes ICI118551-β2AR. (JPEG 94 kb)

High resolution image file (TIFF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano-Ursúa, M.A., Correa-Basurto, J., Trujillo-Ferrara, J.G. et al. Homology model and docking studies on porcine β2 adrenoceptor: description of two binding sites. J Mol Model 17, 2525–2538 (2011). https://doi.org/10.1007/s00894-010-0915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0915-1

Keywords

Navigation