Skip to main content
Log in

Electronic structure modeling of dinuclear copper(II)-methacrylic acid complex by density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A dinuclear centrosymmetric copper(II) complex with the formula [Cu2(μ-maa)4(maaH)2] has been synthesized and experimentally characterized by IR, electronic spectroscopy, and X-ray single-crystal diffractometry. Starting from experimental X-ray geometry and using antiferromagnetic singlet ground state, gas phase geometry optimization was performed by density functional hybrid (B3LYP) method with 6-31G(d) and LANL2DZ basis sets. Gas-phase vibrational frequencies and single point energy (SPE) calculations have been carried out at the geometry-optimized structure. Molecular electrostatic potential calculated at the optimized geometry and natural bond orbital analysis data have been extracted from SPE output. The gas-phase electronic transitions of the title complex were investigated by the time dependent-density functional theory (TD-DFT) approach with the same theory employing LANL2DZ basis set. Also the calculated UV-Vis based upon TD-DFT results and IR spectra were simulated for comparison with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chermette H (1998) Coord Chem Rev 178–180:699–721, dftaccuracy

    Article  Google Scholar 

  2. Autschbach J (2007) Coord Chem Rev 251:1796–1821, review4

    Article  CAS  Google Scholar 

  3. Charles W, Bausclicher JR (1995) Chem Phys Lett 246:40–44

    Article  Google Scholar 

  4. Neese F (2009) Coord Chem Rev 253:526–563, review3

    Article  CAS  Google Scholar 

  5. Holland JP, Barnard PJ, Bayly SR, Dilworthy JR, Green JC (2009) Inorg Chim Acta 362:402–406, nickelTDDFT

    Article  CAS  Google Scholar 

  6. Holland JP, Green JC (2009) J Comput Chem 00:00. DOI:10.1002/jcc.21385) (evaluation_of)

  7. Pu-Su Z, Fang-Fang J, Chun-Lei L, Jian Z (2006) Chin J Struct Chem 25:657–662

    Google Scholar 

  8. Viruela PM, Viruela R, Orti E, Brédas JL (1997) J Am Chem Soc 119:1360–1369

    Article  CAS  Google Scholar 

  9. Morawitz T, Bolte M, Lerner HW, Wagner M (2008) Z Anorg Allg Chem 634:1409–1414

    Article  CAS  Google Scholar 

  10. Sun YM, Wang LL, Wu JS (2008) Transition Met Chem 33:1035–1040

    Article  CAS  Google Scholar 

  11. Hu ZC, Wei HY, Chen ZD (2004) J Mol Struct THEOCHEM 668:235–242

    Article  CAS  Google Scholar 

  12. Bencini A, Costes JP, Dahan F, Dupuis A, Garcia-Tojal J, Gatteschi D, Totti F (2004)

  13. Noh EAA, Zhang J (2006) Chem Phys 330:82–89

    Article  CAS  Google Scholar 

  14. Plaul D, Geibig D, Görls H, Plass W (2009) Polyhedron 28:1982–1990

    Article  CAS  Google Scholar 

  15. Beobide G, Castillo O, García-Couceiro U, García-Terán JP, Luque A, Martínez-Ripll M and Román P (2005) Eur J Inorg Chem 2586–2589

  16. Aronica C, Jeanneau E, El Moll H, Luneau D, Gillon B, Goujon A, Cousson A, Carvajal MA, Robert V (2007) Chem Eur J 13:3666–3674

    Article  CAS  Google Scholar 

  17. Wu B, Lu WM, Zheng XM (2002) J Coord Chem 55:497–503

    Article  CAS  Google Scholar 

  18. Wu B, Lu WM, Zheng XM (2002) Chin J Chem 20:846–850

    CAS  Google Scholar 

  19. Wu B, Lu WM, Zheng XM (2003) Transition Metal Chemistry 28:323–325

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong WM, Gonzalez C, Pople JA (2003) Gaussian 03W, Version 6.1. Gaussian Inc, Pittsburgh

  21. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  22. Moreira IPR, Illas F (2006) Phys Chem Chem Phys 8:1645–1659

    Article  CAS  Google Scholar 

  23. Ruiz E, Cano J, Alvarez S, Alemany P (1999) J Comput Chem 20:1391–1400

    Article  CAS  Google Scholar 

  24. Gorelsky SI, SWizard program, Revision 4.5 http://www.sg-chem.net/

  25. O’Boyle NM, Tenderholt AL, Langner KM (2007) J Comput Chem 29:839–845

    Article  CAS  Google Scholar 

  26. Donglai W, Hongtao S, Yuchun Z (2007) J Rare Earths 25:210–214

    Article  Google Scholar 

  27. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  28. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R, Sir97 (1999) J Appl Cryst 32:115–119

    Article  CAS  Google Scholar 

  29. Sheldrick GM, Shelxl-97 (1997) University of Göttingen, Germany

  30. Addison AW, Rao TN, Reedijk J, Van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349

  31. Frisch A, Dennington R II, Keith T, Millam J, Nielsen AB, Holder AJ, Hiscocks J (2007) GaussView reference, Version 4.0. Gaussian Inc, Pittsburgh

  32. Ghiasi R, Monnajemi M (2006) J Korean Chem Soc 50:281–291

    Article  CAS  Google Scholar 

  33. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Chem Phys Lett 270:416–426

    Article  Google Scholar 

  34. Field LD, Sternhell S, Kalman JR (2007) Organic structures from spectra, 4th edn

  35. Nemykin VN, Olsen JG, Perera E, Basu P (2006) Inorg Chem 45:3557–3568

    Article  CAS  Google Scholar 

  36. Nemykin VN, Makarova EA, Grosland JO, Hadt GR, Koposov AY (2007) Inorg Chem 46:9591–9601

    Article  CAS  Google Scholar 

  37. Donzello MP, Ercolani C, Kadish KM, Ricciardi G, Rosa A, Stuzhin PA (2007) Inorg Chem 46:4145–4157

    Article  CAS  Google Scholar 

  38. Di Censo D, Fantacci S, De Angelis F, Klein C, Evans N, Kalyanasundaram K, Bolink HJ, Grӓtzel M, Nazeeruddin MK (2008) Inorg Chem 47:980–989

    Article  CAS  Google Scholar 

  39. Basu C, Biswas S, Chattopadhyay AK, Stoeckli-Evans H, Mukherjee S (2008) Eur J Inorg Chem 4927–4935

  40. Gahungu G, Zhang J (2005) Chem Phys Lett 410:302–306

    Article  CAS  Google Scholar 

  41. Wakamatsu K, Nishimoto K, Shibahara T (2000) Inorg Chem Commun 3:677–679

    Article  CAS  Google Scholar 

  42. Machura B, Świtlicka A, Kruszynski R, Kusz J, Penczek R (2008) Polyhedron 27:2513–2518

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Demir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demir, S., Yolcu, Z., Andaç, Ö. et al. Electronic structure modeling of dinuclear copper(II)-methacrylic acid complex by density functional theory. J Mol Model 16, 1509–1518 (2010). https://doi.org/10.1007/s00894-010-0660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0660-5

Keywords

Navigation