Skip to main content
Log in

Homology modeling and atomic level binding study of Leishmania MAPK with inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The current therapy for leishmaniasis is not sufficient and it has two severe drawbacks, host-toxicity and drug resistance. The substantial knowledge of parasite biology is not yet translating into novel drugs for leishmaniasis. Based on this observation, a 3D structural model of Leishmania mitogen-activated protein kinase (MAPK) homologue has been developed, for the first time, by homology modeling and molecular dynamics simulation techniques. The model provided clear insight in its structure features, i.e. ATP binding pocket, phosphorylation lip, and common docking site. Sequence-structure homology recognition identified Leishmania CRK3 (LCRK3) as a distant member of the MAPK superfamily. Multiple sequence alignment and 3D structure model provided the putative ATP binding pocket of Leishmania with respect to human ERK2 and LCRK3. This analysis was helpful in identifying the binding sites and molecular function of the Leishmania specific MAPK homologue. Molecular docking study was performed on this 3D structural model, using different classes of competitive ATP inhibitors of LCRK3, to check whether they exhibit affinity and could be identified as Leishmania MAPK specific inhibitors. It is well known that MAP kinases are extracellular signal regulated kinases ERK1 and ERK2, which are components of the Ras-MAPK signal transduction pathway which is complexed with HDAC4 protein, and their inhibition is of significant therapeutic interest in cancer biology. In order to understand the mechanism of action, docking of indirubin class of molecules to the active site of histone deacetylase 4 (HDAC4) protein is performed, and the binding affinity of the protein-ligand interaction was computed. The new structural insights obtained from this study are all consistent with the available experimental data, suggesting that the homology model of the Leishmania MAPK and its ligand interaction modes are reasonable. Further the comparative molecular electrostatic potential and cavity depth analysis of Leishmania MAPK and human ERK2 suggested several important differences in its ATP binding pocket. Such differences could be exploited in the future for designing Leishmania specific MAPK inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karioti A, Skaltsa H, Kaiser M, Tasdemir D (2009) Phytomedicine 16:783–787

    Article  CAS  Google Scholar 

  2. Sinha PK, Pandey K, Bhattacharya SK (2005) Indian J Med Res 121:407–414

    CAS  Google Scholar 

  3. Murray HW, Berman JD, Davies CR et al. (2005) Lancet 366:1561–1577

    Article  CAS  Google Scholar 

  4. Vazquez-Pineiro T, Fernandez AJM, Gonzalo LJC et al. (1998) Oral Surg Oral Med Oral Pathol Oral Radiol Endod 86:179–182

    Article  CAS  Google Scholar 

  5. de MJA Garcia, Dean FA, Alamillos GF et al. (2007) Med Oral Patol Oral Cir Bucal 12:281–286

    Google Scholar 

  6. Wiese M (1998) EMBO J 17:2619–2628

    Article  CAS  Google Scholar 

  7. Chang KP (1983) Int Rev Cytol Suppl 14:267–305

    CAS  Google Scholar 

  8. Croft SL, Coombs GH (2003) Trends in Parasit 19:502–508

    Article  CAS  Google Scholar 

  9. Murray HW (2004) Exp Rev Anti-infective Therapy 2:279–292

    Article  CAS  Google Scholar 

  10. Christopher SP, Kathy S, David H, Lee M et al. (2007) Nat Genet 39:839–847

    Article  Google Scholar 

  11. Gray P, Fred R, Tara BG et al. (2001) Endo Rev 22(2):153–183

    Article  Google Scholar 

  12. Wang Q, Melzer IM, Kruse M et al. (2005) Kinetoplastid Biol Dise 4:6–14

    Article  Google Scholar 

  13. Grant KM, Dunion MH, Yardley V et al. (2004) Antimicrob Agents Chemother 48:3033–3042

    Article  CAS  Google Scholar 

  14. Moon MJ, Lee SK, Lee J-W et al. (2006) Bioorg Med Chem 14:237–246

    Article  CAS  Google Scholar 

  15. Bardwell AJ, Abdollahi M, Bardwell L (2003) Biochem J 370:1077–1085

    Article  CAS  Google Scholar 

  16. Xianbo Z, Voctoria MR, Audrey HW et al. (2000) Proc Natl Acad Sci 97:14329–14333

    Article  Google Scholar 

  17. Sebolt-Leopold JS (2008) Clin Cancer Res 14(12):3651–3666

    Article  CAS  Google Scholar 

  18. Friday BB, Adjei AA (2008) Clin Cancer Res 14(2):342–346

    Article  CAS  Google Scholar 

  19. McCubrey JA, Milella M, Tafuri A et al. (2008) Curr Opin Investig Drugs 9(6):614–630

    CAS  Google Scholar 

  20. Daouti S, Wang H, Li WH et al. (2009) Cancer Res 69(5):1924–1932

    Article  CAS  Google Scholar 

  21. Tai K, Fowler P, Mokrab Y, Stansfeld P, Sansom MS (2008) Methods Cell Biol 90:233–265

    Article  CAS  Google Scholar 

  22. William BH, Bisson WG, Schubiger PA, Scapozza L (2008) J Mol Model 14:891–899

    Article  Google Scholar 

  23. Pietra F (2009) J Chem Inf Model 49:972–977

    Article  CAS  Google Scholar 

  24. Ohori M, Kinoshita T, Okubo M et al. (2005) Biochem Biophys Res Commun 336:357–363

    Article  CAS  Google Scholar 

  25. Marti-Renom MA, Stuart AC, Fiser A (2000) Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  Google Scholar 

  26. Laskowski RA, MacArthur MW, Moss DS et al. (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  27. Colovos C, Yeates TO (1993) Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  28. Sippl MJ (1993) Proteins: Struct Funct Genet 17:355–362

    Article  CAS  Google Scholar 

  29. Brooks BR, Bruccoleri RE, Olafson BD et al. (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  30. DISCOVERY STUDIO, Accelrys, San Diego, CA, USA

  31. MacKerell AD Jr, Bashford D, Bellott M et al. (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  32. Jean-Paul R, Giovanni C, Herman JCB (1977) J Comput Phys 23:327–341

    Article  Google Scholar 

  33. SYBYL software package, Tripos Inc, St Louis, USA

  34. Bhattacharjee AK, Karle JM (1999) Chem Res Toxicol 12:422–428

    Article  CAS  Google Scholar 

  35. Morris GM, Goodsell DS, Halliday RS et al. (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  36. Ohori M (2008) Drug News Perspect 21(5):245–250

    Article  CAS  Google Scholar 

  37. Waskiewicz AJ, Cooper JA (1995) Curr Opin Cell Biol 7:798–805

    Article  CAS  Google Scholar 

  38. Xiao Z, Hao Y, Liu B, Qian L (2002) Leuk Lymphoma 43:1763–1768

    Article  CAS  Google Scholar 

  39. Hoessel R, Leclerc S, Endicott JA et al. (1999) Nat Cell Biol 1:60–67

    Article  CAS  Google Scholar 

  40. Marko D, Schatzle S, Friedel A et al. (2001) Br J Cancer 84:283–289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Ministry of Chemicals and Fertilizers, Govt. of India, India. CGM also acknowledges the Department of Biotechnology (IFD-Dy. No.102/ IFD/SAN/ 884/2006-2009) New Delhi, India for partial financial support of this work. PS is recipient of Senior Research Fellowship from Department of Biotechnology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gopi Mohan.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material Figure 1s

Errat plot of Leishmania MAPK model (DOC 74 kb)

Supplementary materia Figure 2s

Scatter plot of actual in vitro activities (ED50) versus the binding energy computed using AutoDock software (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awale, M., Kumar, V., Saravanan, P. et al. Homology modeling and atomic level binding study of Leishmania MAPK with inhibitors. J Mol Model 16, 475–488 (2010). https://doi.org/10.1007/s00894-009-0565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0565-3

Keywords

Navigation