Skip to main content
Log in

Relationships between aqueous acidities and computed surface-electrostatic potentials and local ionization energies of substituted phenols and benzoic acids

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Electrostatic potentials and average local ionization energies on the molecular surfaces of 19 phenols, 17 benzoic acids and their respective conjugate bases were computed at the HF/STO-5G(d)//B3LYP/6-311G(d,p) level. Good correlations were found between pK as and the V S,max values of the neutral acids and the V S,min and \( \bar{I}_{{{\text{S,min}}}} \) of the conjugate bases for both sets of molecules. V S,max is the most positive value of the electrostatic potential on the molecular surface and is an indicator of the ease with which the phenols and benzoic acids lose their acidic hydrogens. V S,min and \( \bar{I}_{{{\text{S,min}}}} \) are the minimum values of the electrostatic potential and the local ionization energy computed on the molecular surface; the V S,min and \( \bar{I}_{{{\text{S,min}}}} \) of the conjugate bases of the phenoxides and benzoates are indicative, respectively, of the tendencies of electrophiles to approach the anions (V S,min) and to react with the anions (\( \bar{I}_{{{\text{S,min}}}} \)) to reform the original acids. The correlations observed between the computed molecular surface quantities, taken as single parameters, and the experimental pK a values ranged from R=0.938 to R=0.970 for the two classes of compounds.

Figure Correlation between pK a and the computed V S,max of the benzoic acids listed in Table 2. The linear correlation coefficient is 0.970

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haeberlein M, Murray JS, Brinck T, Politzer P (1992) Can J Chem 70:2209–2214

    CAS  Google Scholar 

  2. Gross KC, Seybold PG (2000) Int J Quantum Chem 80:1107–1115

    Article  CAS  Google Scholar 

  3. Gross KC, Seybold PG, Peralta-Inga Z, Murray JS, Politzer P (2001) J Org Chem 66:6919-6925

    Article  CAS  PubMed  Google Scholar 

  4. Gross KC, Seybold PG (2001) Int J Quantum Chem 85:569–579

    Article  CAS  Google Scholar 

  5. Hollingsworth CA, Seybold PG, Hadad CM (2002) Int J Quantum Chem 90:1396–1403

    Article  CAS  Google Scholar 

  6. Murray JS, Politzer P (1998) Average local ionization energies: significance and applications. In: Parkanyi C (ed) Theoretical organic chemistry. Elsevier, Amsterdam, chapter 7

  7. Politzer P, Daiker KC (1981) In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New York, pp 294–387

  8. Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry II. VCH, New York, chapter 7

  9. Murray JS, Politzer P (1998) Molecular electrostatic potentials. In: Schleyer PvR (ed) Encyclopedia of computational chemistry. Wiley, New York

  10. Murray JS, Politzer P (1992) J Chem Res (S) 110–111

  11. Murray JS, Brinck T, Grice ME, Politzer P (1992) J Mol Struct (Theochem) 256:29–45

    Google Scholar 

  12. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443

    Google Scholar 

  13. Koopmans TA (1933) Physica 1:104–113

    CAS  Google Scholar 

  14. Brinck T, Murray JS, Politzer P (1991) J Org Chem 56:5012–5015

    CAS  Google Scholar 

  15. Brinck T, Murray JS, Politzer P, Carter RE (1991) J Org Chem 56:2934–2936

    CAS  Google Scholar 

  16. Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Int J Quantum Chem, Quantum Chem Symp 24:645–653

    Google Scholar 

  17. Brinck T, Murray JS, Politzer P (1993) Int J Quantum Chem 48:73–88

    CAS  Google Scholar 

  18. Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct (Theochem) 501–502:241–250

  19. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  20. Jin P, Murray JS, Politzer P (2004) Int J Quantum Chem 96:394–401

    Article  CAS  Google Scholar 

  21. Scrocco E, Tomasi J (1973) In: Topics in current chemistry. Springer, Berlin Heidelberg New York, pp 95-170

  22. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

  23. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95, pp 829–847

  24. Murray JS, Sen K (eds) (1996) Molecular electrostatic potentials. Elsevier, Amsterdam

  25. Hagelin H, Murray JS, Brinck T, Berthelot M, Politzer P (1995) Can J Chem 73:483–488

    CAS  Google Scholar 

  26. Pathak RK, Gadre SR (1990) J Chem Phys 93:1770–1773

    Article  CAS  Google Scholar 

  27. SAS. SAS Institute Inc, Cary, NC, 27511

  28. Albert A, Serjeant EF (1962) Ionization constants of acids and bases. Methuen, London

  29. Murray JS, Peralta-Inga Z, Politzer P, Ekanayake K, LeBreton P (2001) Int J Quantum Chem: Biophys Q 83:245–254

    Google Scholar 

  30. Murray JS, Peralta-Inga Z, Politzer P (1999) Int J Quantum Chem 75:267–273

    Article  CAS  Google Scholar 

  31. Hussein W, Walker CG, Peralta-Inga Z, Murray JS (2001) Int J Quantum Chem 82:160–169

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Peter Politzer for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Gross, K.C., Hollingsworth, C.A. et al. Relationships between aqueous acidities and computed surface-electrostatic potentials and local ionization energies of substituted phenols and benzoic acids. J Mol Model 10, 235–239 (2004). https://doi.org/10.1007/s00894-004-0185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-004-0185-x

Keywords

Navigation