Skip to main content
Log in

Structural Effects on the Hydrogen-Bonding Descriptors of the Solvation Parameter Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Optimized hydrogen-bond descriptors are provided for 21 primary and secondary alcohols, 16 phenols, 10 anilines and 4 amides derived from experimental chromatographic and liquid partition data analyzed using the solvation parameter model with the Solver method. Solver is an optimization package in Microsoft Excel that simultaneously adjusts the descriptor values to minimize the sum of the standard deviation of the residuals for the dependent experimental variable for a set of model equations using a Simplex algorithm. For the full data set the optimized hydrogen-bond acid descriptors are approximately 1.27 times larger than Abraham’s descriptors and the hydrogen-bond base descriptors roughly equivalent. For an isolated aliphatic primary hydroxyl group the hydrogen-bond acidity was estimated as A = 0.340 and hydrogen-bond basicity B = 0.539 and compared with a secondary hydroxyl group is a stronger hydrogen-bond acid and similar hydrogen-bond base, A = 0.26 and B = 0.54. For alcohols of the type C6H5(CH2)mOH the A and B descriptors are linearly related to m for at least m = 1 to 3. In unsubstituted phenols the hydroxyl group is more hydrogen-bond acidic, A = 0.740, and less hydrogen-bond basic, B = 0.158, than a primary aliphatic hydroxyl group. Ortho substituents reduce the hydrogen-bond acidity of a phenolic hydroxyl group in the order –CH3 < –Cl <  < –NO2 with 2-nitrophenol almost non-hydrogen-bond acidic, A = 0.062, due to favorable intramolecular hydrogen-bonding. For para-substituted phenols hydrogen-bond acidity increases in the order –CH3 < –Br < –C6H5 < –CN ≈ –Cl <  < –NO2 with a range for A from 0.673 to 0.975 and for hydrogen-bond basicity –Cl ≈ –Br < –NO2 < –CH3 < –CN < –C6H5 with a range for B from 0.775 to 1.267. The ranking order is not simply explained by consideration of inductive or mesomeric effects acting individually. The –NH2 group in aniline is a weaker hydrogen-bond acid, A = 0.238, and stronger hydrogen-bond base than phenol. A single methyl group in any ring position for anilines simultaneously increases the hydrogen-bond basicity and reduces the hydrogen-bond acidity of the –NH2 group. A single nitro group in any ring position has the opposite effect on the hydrogen-bonding properties of the –NH2 group. Primary amides are relatively strong hydrogen-bond acids and bases compared with primary alcohols and anilines and occupy the same descriptor space as phenols. An NMR correlation model is developed to estimate the optimized A descriptor using chemical shift differences for acidic protons in DMSO and CDCl3. The principle of additivity is not a good model for estimating the A and B descriptors for compounds with more than one hydrogen-bond acid/base site, although it provides acceptable results in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All experimental data is in the public domain and can be retrieved from the cited sources without hinderance for free.

Code Availability

Not applicable.

References

  1. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and approach to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)

    Article  CAS  Google Scholar 

  2. Abraham, M.H., Platts, J.A.: Hydrogen bond structural group constants. J. Org. Chem. 66, 3484–3491 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Abraham, M.H., Gola, J.M.R., Cometto-Muniz, J.E., Acree, W.E.: Hydrogen bonding between solutes in solvents octan-1-ol and water. J. Org. Chem. 75, 7651–7658 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abraham, M.H., Poole, C.F., Poole, S.K.: Classification of stationary phases and other materials by gas chromatography. J. Chromatogr. A 842, 79–114 (1999)

    Article  CAS  Google Scholar 

  5. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Poole, C.F., Ariyasena, T.C., Lenca, N.: Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 1317, 85–104 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Abraham, M.H., Whiting, G.S., Doherty, R.M., Shuely, W.J.: Hydrogen bonding 13. A new method for the characterization of GC stationary phases—the Laffort data set. J. Chem. Soc. Perkin Trans. 2, 1451–1460 (1990)

    Article  Google Scholar 

  8. Abraham, M.H., Whitting, G.S., Doherty, R.M., Shuely, W.J.: Hydrogen-bonding 16: a new solute solvation parameter, π2H, from gas chromatographic data. J. Chromatogr. 587, 213–228 (1991)

    Article  CAS  Google Scholar 

  9. Martin, S.D., Poole, C.F., Abraham, M.H.: Synthesis and gas chromatographic evaluation of a high-temperature hydrogen-bond acid stationary phase. J. Chromatogr. A 805, 217–235 (1998)

    Article  CAS  Google Scholar 

  10. Abraham, M.H.: Hydrogen-bonding 31: construction of a scale of solute effective or summation hydrogen-bond basicity. J. Phys. Org. Chem. 6, 660–684 (1993)

    Article  CAS  Google Scholar 

  11. ADME suite 5.0, Advanced Chemistry Development, Toronto, ON.

  12. Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, C., Abraham, M.H., Goss, K.-H.: UFZ-LSER Database v. 3.2.1 [internet]. Helmholtz Centre for Environmental Research-UFZ, Leipzig (2017)

    Google Scholar 

  13. Poole, C.F.: Wayne State University experimental descriptor database for use with the solvation parameter model. J. Chromatogr. A 1617, 460841 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. Poole, C.F.: Selection of calibration compounds for selectivity evaluation of wall-coated, open-tubular columns for gas chromatography by the solvation parameter model. J. Chromatogr. A 1629, 461500 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. Poole, C.F.: Selection of calibration compounds for selectivity evaluation of siloxane-bonded silica columns for reversed-phase liquid chromatography by the solvation parameter model. J. Chromatogr. A 1633, 461652 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Poole, C.F., Atapattu, S.N.: Selectivity evaluation of core-shell silica columns for reversed-phase liquid chromatography using the solvation parameter model. J. Chromatogr. A 1634, 461692 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Poole, C.F.: Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography. J. Chromatogr. A 1626, 461308 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. Poole, C.F., Atapattu, S.N., Bell, A.K.: Determination of solute descriptors by chromatographic methods. Anal. Chim. Acta 652, 32–53 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Poole, C.F., Ahmed, H., Kiridena, W., Patchett, C.C., Koziol, W.W.: Revised solute descriptors for characterizing retention properties of open-tubular columns in gas chromatography and their application to a carborane-siloxane copolymer stationary phase. J. Chromatogr. A 1104, 299–312 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Poole, C.F.: Solvation parameter model: tutorial on its application to separation systems for neutral compounds. J. Chromatogr. A 1645, 462108 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. Poole, C.F.: Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J. Chromatogr. A 1604, 460482 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. Poole, C.F.: Gas chromatography system constant database over an extended temperature range for nine open-tubular columns. J. Chromatogr. A 1590, 130–145 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Lenca, N., Poole, C.F.: A system map for the ionic liquid stationary phase 1,9-Di(3-vinylimidazolium)nonane Bis(trifluoromethylsulfonyl)imide. Chromatographia 78, 81–88 (2015)

    Article  CAS  Google Scholar 

  24. Lenca, N., Poole, C.F.: A system map for the ionic liquid stationary phase tri(tripropylphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide for gas chromatography. J. Chromatogr. A 1524, 210–214 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. Lenca, N., Poole, C.F.: A system maps for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide for gas chromatography. J. Chromatogr. A 1525, 138–144 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Lenca, N., Poole, C.F.: A system maps for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography. J. Chromatogr. A 1559, 164–169 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Abraham, M.H., Andonian-Haftvan, J., Hamerton, I., Poole, C.F., Kollie, T.O.: Comparison of the solvation theories of Abraham and Poole, using a new acidic GLC stationary phase. J. Chromatogr. 646, 351–360 (1993)

    Article  CAS  Google Scholar 

  28. Poole, C.F.: Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. J. Chromatogr. A 1600, 112–126 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. Atapattu, S.N.: Solvation properties of acetone–water mobile phases in reversed-phase liquid chromatography. J. Chromatogr. A 1650, 462252 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. Poole, C.F.: Partition constant database for totally organic biphasic systems. J. Chromatogr. A 1527, 18–32 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Ariyasena, T.C., Poole, C.F.: Models for liquid–liquid partition in the system ethanolamine–organic solvent and their use for estimating descriptors for organic compounds. Chromatographia 76, 157–164 (2013)

    Article  CAS  Google Scholar 

  32. Ariyasena, T.C., Poole, C.F.: Evaluation of triethylamine as a counter solvent in totally organic biphasic liquid–liquid partition systems. Chromatographia 76, 1031–1039 (2013)

    Article  CAS  Google Scholar 

  33. Hansch, C., Leo, A., Hoekman, D.: Q.S.A.R. Exploring Hydrophobic, Electronic, and Steric Constraints. American Chemical Society, Washington, DC (1995)

    Google Scholar 

  34. Abraham, M.H., Platts, J.A., Hersey, A., Leo, A.J., Taft, R.W.: Correlation and estimation of gas–chloroform and water–chloroform partition coefficients by a linear free energy relationship method. J. Pharm. Sci. 88, 670–679 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Sprunger, L.M., Gibbs, J., Acree, W.E., Abraham, M.H.: Correlation and prediction of partition coefficients for solute transfer to 1,2-dichloroethane from both water and from the gas phase. Fluid Phase Equilibr. 273, 78–86 (2008)

    Article  CAS  Google Scholar 

  36. Qian, J., Poole, C.F.: Distribution model for Folch partition. J. Sep. Sci. 30, 2326–2331 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Abraham, M.H., Chadha, H.S., Whiting, G.S., Mitchell, R.C.: Hydrogen bonding 32. An analysis of water–octanol and water–alkane partitioning and the Δlog P parameter of Seller. J. Pharm. Sci. 83, 1085–1100 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. Platts, J.A., Butina, D., Abraham, M.H., Hersey, A.: Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci. 39, 825–845 (1999)

    Article  CAS  Google Scholar 

  39. Ariyasena, T.C., Poole, C.F.: Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid–liquid partition in totally organic biphasic systems. J. Chromatogr. A 1361, 240–254 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Sheldon, T.J., Adjiman, C.S., Cordiner, J.L.: Pure component properties from group contribution: hydrogen-bond basicity, Hildebrand solubility parameter, macroscopic surface tension, dipole moment, refractive index and dielectric constant. Fluid Phase Equilibr. 231, 27–37 (2005)

    Article  CAS  Google Scholar 

  41. Schuurmann, G., Ebert, R.-U., Kuehne, R.: Prediction of physicochemical properties of organic compounds from 2D molecular structure—fragment methods vs. LFER models. Chimia 60, 691–698 (2006)

    Article  CAS  Google Scholar 

  42. Cacelli, I., Campanile, S., Giolitt, A., Molin, D.: Theoretical prediction of the Abraham hydrogen bond acidity and basicity factors from a reaction field method. J. Chem. Inf. Model. 45, 327–333 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Devereux, M., Popelier, P.L.A., Mclay, I.M.: A refined model for prediction of hydrogen bond acidity and basicity parameters from quantum chemical molecular descriptors. Phys. Chem. Chem. Phys. 11, 1595–1603 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. Schwobel, J.A.H., Ebert, R.-U., Kuhne, R., Schuurmann, G.: Prediction models for Abraham hydrogen bond donor strength: comparison of semi-empirical, ab initio, and DFT methods. J. Phys. Org. Chem. 24, 1072–1080 (2011)

    Article  CAS  Google Scholar 

  45. Rahaman, O., Doren, D.J., Di Toro, D.M.: Quantum mechanical estimation of Abraham hydrogen bond parameters using 1:1 donor-acceptor complexes. J. Phys. Org. Chem. 27, 783–793 (2014)

    Article  CAS  Google Scholar 

  46. Liang, Y.-Z., Xiong, R.C., Sandler, S.I., Di Toro, D.M.: Quantum chemically estimated Abraham solute parameters using multiple solvent–water partition coefficients and molecular polarizability. Environ. Sci. Technol. 51, 9887–9898 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. Lenca, N., Atapattu, S.N., Poole, C.F.: Estimation of descriptors for hydrogen-bonding compounds from chromatographic and liquid–liquid partition measurements. J. Chromatogr. A 1526, 13–22 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Abraham, M.H., Du, C.M., Platts, J.A.: Lipophilicity of nitrophenols. J. Org. Chem. 65, 7114–7118 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. Abraham, M.H., Dearden, J.C., Bresnen, G.M.: Hydrogen bonding steric effects and thermodynamics of partitioning. J. Phys. Org. Chem. 19, 242–248 (2006)

    Article  CAS  Google Scholar 

  50. Abraham, M.H., Abraham, R.J., Acree, W.E., Aliev, A.E., Leo, A., Whaley, W.L.: An NMR method for the quantitative assessment of intermolecular hydrogen bonding: application to physicochemical, environmental, and biochemical properties. J. Org. Chem. 79, 11075–11083 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Abraham, M.H., Abraham, R.J., Aliev, A.E., Tormena, C.F.: Is there an intramolecular bond in 2-halophenols? A theoretical and spectroscopic investigation. Phys. Chem. Chem. Phys. 17, 25151–25159 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. Abraham, M.H., Acree, W.E., Earp, C.E., Vladimirova, A., Whaley, W.L.: Studies on the hydrogen bond acidity and other descriptors and properties for hydroxyflavones and hydroxyisoflavones. J. Mol. Liq. 208, 363–372 (2015)

    Article  CAS  Google Scholar 

  53. Acree, W.E., Smart, K., Abraham, M.H.: Abraham model solute descriptors reveal strong intramolecular hydrogen bonding in 1,4-dihydroxyanthraquinone and 1,8-dihydroxyanthraquinone. Phys. Chem. Liq. 56, 416–420 (2018)

    Article  CAS  Google Scholar 

  54. Abraham, M.H., Abraham, R.J., Aghamohammadi, A., Afarinkia, K., Liu, X.L.: The assessment of intramolecular hydrogen bonding in ortho-substituted anilines by an NMR method. J. Mol. Liq. 315, 113730 (2020)

    Article  CAS  Google Scholar 

  55. Abraham, M.H., Abraham, R.J.: A simple and facile NMR method for the determination of hydrogen bonding by amide N-H protons in protein models and other compounds. New J. Chem. 41, 6064–6066 (2017)

    Article  CAS  Google Scholar 

  56. Atapattu, S.N., Poole, C.F.: Solute descriptors for characterizing retention properties of open-tubular columns of different selectivity in gas chromatography at intermediate temperatures. J. Chromatogr. A 1195, 136–145 (2008)

    Article  CAS  PubMed  Google Scholar 

  57. Abraham, M.H., Abraham, R.J., Byrne, J., Griffiths, L.: NMR method for the determination of solute hydrogen bond acidity. J. Org. Chem. 71, 3389–3394 (2006)

    Article  CAS  PubMed  Google Scholar 

  58. Abraham, M.H., Gil-Lostes, J., Cometto-Muniz, J.E., Cain, W.S., Poole, C.F., Atapattu, S.N., Abraham, R.J., Leonard, P.: The hydrogen-bond acidity and other descriptors for oximes. New J. Chem. 33, 76–81 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

CFP is the sole author of this article and responsible for all elements of the manuscript.

Corresponding author

Correspondence to Colin F. Poole.

Ethics declarations

Conflict of interest

The author has no financial or proprietary interest in any of the material discussed in this article.

Ethical Approval

Not applicable. No human or animal data used in writing this manuscript.

Consent to Participate

Not applicable.

Consent for Publication

Wayne State University agrees to the submission of this article by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poole, C.F. Structural Effects on the Hydrogen-Bonding Descriptors of the Solvation Parameter Model. J Solution Chem 51, 1056–1080 (2022). https://doi.org/10.1007/s10953-021-01133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01133-z

Keywords

Navigation