Skip to main content
Log in

Deinococcus radiodurans YgjD and YeaZ are involved in the repair of DNA cross-links

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Orthologs of Escherichia coli ygjD and yeaZ genes are highly conserved in various organisms. The genome of the radioresistant bacterium Deinococcus radiodurans possesses single orthologs of ygjD (DR_0382) and yeaZ (DR_0756). Complete loss of either one or both genes did not result in any significant changes in cell growth efficiency, indicating that both genes are not essential for cell viability in D. radiodurans, unlike the case with other species such as E. coli, Bacillus subtilis and Saccharomyces cerevisiae. Survival rates following DNA damage induced by hydrogen peroxide (H2O2), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ultra violet (UV) radiation, γ-rays, cisplatin and mitomycin C (MMC) were compared among the wild-type strain and D. radiodurans ygjD/yeaZ null mutants. Cell viability of the null mutants did not decrease following exposure to H2O2 or MNNG. In addition, the reduction in cell viability following exposure to γ-rays, UV radiation or cisplatin was marginal in the null mutants compared to the wild-type strain. Interestingly, the null mutants exhibited high sensitivity to MMC, which mainly causes interstrand DNA cross-links. The sensitivity of the null mutants to MMC was restored to that of the wild type by transformation with plasmids expressing these genes. These results suggest that D. radiodurans ygjD and yeaZ genes are involved in DNA repair and play a role in the repair of DNA cross-links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah KM, Lo RYC, Mellors A (1991) Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J Bacteriol 173:5597–5603

    PubMed  CAS  Google Scholar 

  • Abdullah KM, Udoh EKPEA, Shewen PE, Mellors A (1992) A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves O-sialoglycoproteins. Infect Immun 60:56–62

    PubMed  CAS  Google Scholar 

  • Agostini HJ, Carroll JD, Minton KW (1996) Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 178:6759–6765

    PubMed  CAS  Google Scholar 

  • Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan D (1956) Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10:575–577

    Google Scholar 

  • Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856

    Article  PubMed  CAS  Google Scholar 

  • Aydin I, Saijo-Hamano Y, Namba K, Thomas C, Roujeinikova A (2011) Structural analysis of the essential resuscitation promoting factor YeaZ suggests a mechanism of nucleotide regulation through dimer reorganization. PLoS ONE 6:e23245

    Article  PubMed  CAS  Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

    Article  PubMed  CAS  Google Scholar 

  • Bernstein K, Rothstein R (2009) At loose ends: resecting a double-strand break. Cell 137:807–810

    Article  PubMed  CAS  Google Scholar 

  • Bizanek R, McGuinness BF, Nakanishi K, Tomasz M (1992) Isolation and structure of an intrastrand cross-link adduct of mitomycin C and DNA. Biochemistry 31:3084–3091

    Article  PubMed  CAS  Google Scholar 

  • Blasius M, Sommer S, Hübscher U (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol 43:221–238

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:16–18

    Google Scholar 

  • Deutsch C, El Yacoubi B, de Crécy-Lagard V, Iwata-Reuyl D (2012) Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. J Biol Chem 287:13666–13673

    Article  PubMed  CAS  Google Scholar 

  • Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, Guillard S, Partington M, Zubko MK, Krogan NJ, Emili A, Greenblatt JF, Harrington L, Lydall D, Durocher D (2006) A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 124:1155–1168

    Article  PubMed  CAS  Google Scholar 

  • El Yacoubi B, Hatin I, Deutsch C, Kahveci T, Rousset JP, Iwata-Reuyl D, Murzin AG, Lagard VC (2011) A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 30:882–893

    Article  PubMed  Google Scholar 

  • Fujikane R, Ishino S, Ishino Y, Forterre P (2010) Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Genes Genet Syst 85:243–257

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Koonin EV (2010) From complete genome sequence to ‘complete’ understanding? Trends Biotechnol 28:398–406

    Article  PubMed  CAS  Google Scholar 

  • Griese M, Lange C, Soppa J (2011) Ploidy in cyanobacteria. FEMS Microbial Lett 323:124–131

    Article  CAS  Google Scholar 

  • Handford JI, Ize B, Buchanan G, Butland GP, Greenblatt J, Emili A, Palmer T (2009) Conserved network of proteins essential for bacterial viability. J Bacteriol 191:4732–4749

    Article  PubMed  CAS  Google Scholar 

  • Hansen MT (1978) Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134:71–75

    PubMed  CAS  Google Scholar 

  • Harsojo, Kitayama S, Matsuyama A (1981) Genome multiplicity and radiation resistance in Micrococcus radiodurans. J Biochem 90:877–880

    PubMed  CAS  Google Scholar 

  • Hashimoto C, Sakaguchi K, Taniguchi Y, Honda H, Oshima T, Ogasawara N, Kato J (2011) Effects of transcription of mutants in ygjD, yeaZ and yjeE genes, which are involved in a universal tRNA modification in Escherichia coli. J Bacteriol 193:6075–6079

    Article  PubMed  CAS  Google Scholar 

  • Hecker A, Leulliot N, Gadelle D, Graille M, Justome A, Dorlet P, Brochier C, Quevillon-Cheruel S, Cam EL, Tilbeurgh HV, Forterre P (2007) An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Nucleic Acids Res 35:6042–6051

    Article  PubMed  CAS  Google Scholar 

  • Jiao J, Wang L, Xia W, Li M, Sun H, Xu G, Tian B, Hua Y (2012) Function and biochemical characterization of RecJ in Deinococcus radiodurans. DNA Repair 11:349–356

    Article  PubMed  CAS  Google Scholar 

  • Karandashova I, Elanskaya I, Marin K, Vinnemeier J, Hagemann M (2002) Identification of genes essential for growth at high salt concentrations using salt-sensitive mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Curr Microbiol 44:184–188

    Article  PubMed  CAS  Google Scholar 

  • Katz C, Cohen-Or I, Gophna U, Ron EZ (2010) The ubiquitous conserved glycopeptidase Gcp prevents accumulation of toxic glycated proteins. mBio 1:e0019510

    Article  Google Scholar 

  • Kisseleva-Romanova E, Lopreiato R, Baudin-Baillieu A, Rousselle JC, Ilan L, Hofmann K, Namane A, Mann C, Libri D (2006) Yeast homolog of a cancer-testis antigen defines a new transcription complex. EMBO J 25:3576–3585

    Article  PubMed  CAS  Google Scholar 

  • Kitayama S, Narumi I, Funayama T, Watanabe H (2003) Cloning of structural gene of Deinococcus radiodurans UV-endonuclease β. Biosci Biotechnol Biochem 67:613–616

    Article  PubMed  CAS  Google Scholar 

  • Lei T, Liang X, Yang J, Yan M, Zheng L, Walcheck B, Ji Y (2011) The C-terminal domain of the novel essential protein Gcp is critical for interaction with another essential protein YeaZ of Staphylococcus aureus. PLoS ONE 6:e20163

    Article  PubMed  CAS  Google Scholar 

  • Meima ROB, Rothfuss HM, Gewin L (2001) Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 183:3169–3175

    Article  PubMed  CAS  Google Scholar 

  • Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R (2007) Recombination proteins and rescue of arrested replication forks. DNA Repair 6:967–980

    Article  PubMed  CAS  Google Scholar 

  • Moseley BE, Copland HF (1978) Four mutants of Micrococcus radiodurans defective in the ability to repair DNA damaged by mitomycin-C, two of which have wild-type resistance to ultraviolet radiation. Mol Gen Genet 160:331–337

    Article  PubMed  CAS  Google Scholar 

  • Naor A, Thiaville PC, Altman-Price N, Cohen-Or I, Allers T, de Crécy-Lagard V, Gophna U (2012) A genetic investigation of the KEOPS complex in halophilic archaea. PLoS ONE 7:e43013

    Article  PubMed  CAS  Google Scholar 

  • Narumi I, Cherdchu K, Kitayama S, Watanabe H (1997) The Deinococcus radiodurans uvrA gene: identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene 198:115–126

    Article  PubMed  CAS  Google Scholar 

  • Narumi I, Satoh K, Kikuchi M, Funayama T, Kitayama S, Yanagisawa T, Watanabe H, Yamamoto K (1999) Molecular analysis of the Deinococcus radiodurans recA locus and identification of a mutation site in a DNA repair-deficient mutant, rec30. Mutat Res 435:233–243

    Article  PubMed  CAS  Google Scholar 

  • Oberto J, Breuil N, Hecker A, Farina F, Brochier-Armanet C, Culetto E, Forterre P (2009) Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance. Nucleic Acids Res 37:5343–5352

    Article  PubMed  CAS  Google Scholar 

  • Ohba H, Satoh K, Yanagisawa T, Narumi I (2005) The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene 363:133–141

    Article  PubMed  CAS  Google Scholar 

  • Rajagopala SV, Yamamoto N, Zweifel AE, Nakamichi T, Huang HK, Mendez-Rios JD, Franca-Koh J, Boorgula MP, Fujita K, Suzuki K, Hu JC, Wanner BL, Mori H, Uetz P (2010) The Escherichia coli K-12 ORFeome: a resource for comparative molecular microbiology. BMC Genomics 11:470

    Article  PubMed  Google Scholar 

  • Satoh K, Ohba H, Sghaier H, Narumi I (2006) Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 152:3217–3226

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Kikuchi M, Ishaque AM, Ohba H, Yamada M, Tejima K, Onodera T, Narumi I (2012) The role of Deinococcus radiodurans RecFOR proteins in homologous recombination. DNA Repair 11:410–418

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, Karzai AW, Sternglanz R (2011) The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J 30:873–881

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Narumi I, Funayama T, Kikuchi M, Watanabe H, Matsunaga T, Nikaido O, Yamamoto K (2005) Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. J Bacteriol 187:3693–3697

    Article  PubMed  CAS  Google Scholar 

  • Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Chem Biol 2:575–579

    Article  PubMed  CAS  Google Scholar 

  • Zalacain M, Biswas S, Ingraham KA, Ambrad J, Bryant A, Chalker AF, Iordanescu S, Fan J, Fan F, Lunsford RD, O’Dwyer K, Palmer LM, So C, Sylvester D, Volker C, Warren P, McDevitt D, Brown JR, Holmes DJ, Burnham MKR (2003) A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J Mol Microbiol Biotechnol 6:109–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Akira Nakamura, University of Tsukuba for the valuable comments and discussion about ygjD and yeaZ orthologs. I am also indebted to the members of Ion Beam Mutagenesis Research Group of JAEA, whose opinions and information have helped me very much throughout this study. This work was supported in partly by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS) (grant no. 22580098 to I.N.) and by the JSPS Research Fellowship for Young Scientists (to T.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takefumi Onodera.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onodera, T., Satoh, K., Ohta, T. et al. Deinococcus radiodurans YgjD and YeaZ are involved in the repair of DNA cross-links. Extremophiles 17, 171–179 (2013). https://doi.org/10.1007/s00792-012-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0506-4

Keywords

Navigation