Skip to main content
Log in

Characterization and role of a 2′,3′-cyclic phosphodiesterase from Deinococcus radiodurans

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

A 2′,3′-cyclic phosphodiesterase gene (drCPDase) has been characterized from Deinococcus radiodurans and is involved in the robust resistance of this organism.

Results

Cells lacking 2′,3′-cyclic phosphodiesterase gene (drCPDase) showed modest growth defects and displayed increased sensitivities to high doses of various DNA-damaging agents including ionizing radiation, mitomycin C, UV and H2O2. The transcriptional level of drCPDase increased after H2O2 treatment. Additional nucleotide monophosphate partially recovered the phenotype of drCPDase knockout cells. Complementation of E. coli with drCPDase resulted in enhanced H2O2 resistance.

Conclusions

The 2′,3′-cyclic phosphodiesterase (drCPDase) contributes to the extreme resistance of D. radiodurans and is presumably involved in damaged nucleotide detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arn EA, Abelson JN (1996) The 2′-5′ RNA ligase of Escherichia coli - purification, cloning, and genomic disruption. J Biol Chem 271:31145–31153

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Mueller CW, Julin DA (2010) Analysis of the recJ gene and protein from Deinococcus radiodurans. DNA Rep 9(1):66–75

    Article  CAS  Google Scholar 

  • Chen H, Xu G, Zhao Y, Tian B, Lu H, Yu X, Xu Z, Ying N, Hu S, Hua Y (2008) A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS ONE 3:e1602

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Chen X, Xu G, Wang L, Xu H, Yang S, Zhao Y, Hua Y (2015) Biochemical and functional characterization of the NurA-HerA complex from Deinococcus radiodurans. J Bacteriol 197:2048–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng K, Xu H, Chen X, Wang L, Tian B, Zhao Y, Hua Y (2016) Structural basis for DNA 5 -end resection by RecJ. Elife 5:e14294

    PubMed  PubMed Central  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee DY, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS ONE 5:e12570

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao G, Lu H, Huang L, Hua Y (2005) Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans. Chin Sci Bull 50:311–316

    Article  CAS  Google Scholar 

  • Ishino Y, Narumi I (2015) DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 25:103–112

    Article  CAS  PubMed  Google Scholar 

  • Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:a012765

    Article  PubMed  PubMed Central  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    Article  CAS  PubMed  Google Scholar 

  • Li M, Sun H, Feng Q, Lu H, Zhao Y, Zhang H, Xu X, Jiao J, Wang L, Hua Y (2013) Extracellular dGMP enhances Deinococcus radiodurans tolerance to oxidative stress. PLoS ONE 8:e54420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Hu Y, Tian B, Hua Y (2009) Evolution of double MutT/Nudix domain-containing proteins: similar domain architectures from independent gene duplication-fusion events. J Genet Genom 36:603–610

    Article  CAS  Google Scholar 

  • Lin L, Dai S, Tian B, Li T, Yu J, Liu C, Wang L, Xu H, Zhao Y, Hua Y (2016) DqsIR quorum sensing-mediated gene regulation of the extremophilic bacterium Deinococcus radiodurans in response to oxidative stress. Mol Microbiol 100:527–541

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA 100:4191–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munteanu A, Uivarosi V, Andries A (2015) Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles 19:707–719

    Article  CAS  PubMed  Google Scholar 

  • Ngo KV, Molzberger ET, Chitteni-Pattu S, Cox MM (2013) Regulation of Deinococcus radiodurans RecA protein function via modulation of active and inactive nucleoprotein filament states. J Biol Chem 288:21351–21366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Gene Dev 24:1832–1860

    Article  PubMed  PubMed Central  Google Scholar 

  • Popow J, Schleiffer A, Martinez J (2012) Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 69:2657–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus BS, Shuman S (2013) A kinetic framework for tRNA ligase and enforcement of a 2′-phosphate requirement for ligation highlights the design logic of an RNA repair machine. RNA 19:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus BS, Jacewicz A, Shuman S (2014) Structure and mechanism of E. coli RNA 2′,3′-cyclic phosphodiesterase. RNA 20:1697–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwer B, Sawaya R, Ho CK, Shuman S (2004) Portability and fidelity of RNA-repair systems. Proc Natl Acad Sci USA 101:2788–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Shen J, Dunn CA, Desai S, Bessman MJ (2001) The Nudix hydrolases of Deinococcus radiodurans. Mol Microbiol 39:286–290

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xu Q, Lu M, Xu X, Wang Y, Wang L, Zhao Y, Hua Y (2014) Structural and functional studies of MutS2 from Deinococcus radiodurans. DNA Repair 21:111–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation for Outstanding Young Scientists (LR16C050002) and grants from the National Natural Science Foundation of China (31670819, 31670065).

Supporting information

Supplementary Table 1—Bacterial strains and plasmids.

Supplementary Table 2—Primers used for cloning and real time PCR.

Supplementary Fig. 1—Sequence alignments of the CPDase family proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Zhou, C., Cheng, J. et al. Characterization and role of a 2′,3′-cyclic phosphodiesterase from Deinococcus radiodurans . Biotechnol Lett 39, 1211–1217 (2017). https://doi.org/10.1007/s10529-017-2349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2349-7

Keywords

Navigation