Skip to main content
Log in

Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Extremophilic anaerobes are widespread in saline, acid, alkaline, and high or low temperature environments. Carbon is essential to living organisms and its fixation, degradation, or mineralization is driven by, up to now, six metabolic pathways. Organisms using these metabolisms are known as autotrophs, acetotrophs or carbon mineralizers, respectively. In anoxic and extreme environments, besides the well-studied Calvin–Benson–Bassham cycle, there are other five carbon fixation pathways responsible of autotrophy. Moreover, regarding carbon mineralization, two pathways perform this key process for carbon cycling. We might imagine that all the pathways can be found evenly distributed in microbial biotopes; however, in extreme environments, this does not occur. This manuscript reviews the most commonly reported anaerobic organisms that fix carbon and mineralize acetate in extreme anoxic habitats. Additionally, an inventory of autotrophic extremophiles by biotope is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akutsu Y, Li Y-Y, Harada H, Yu H-Q (2009) Effects of temperature and substrate concentration on biological hydrogen production from starch. Int J Hydrogen Energy 34:2558–2566

    Article  CAS  Google Scholar 

  • Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol 61:595–605

    Article  PubMed  CAS  Google Scholar 

  • Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments: new taxa: Firmicutes (Class Clostridia, Order Clostridiales, Family Peptococcaceae). Extremophiles 14:305–312

    Article  PubMed  CAS  Google Scholar 

  • Amann J, Lange D, Schuler M, Rabus R (2010) Substrate-dependent regulation of carbon catabolism in marine sulfate-reducing Desulfobacterium autotrophicum HRM2. J Mol Microbiol Biotechnol 18:74–84

    Article  PubMed  CAS  Google Scholar 

  • Andrei AS, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9

    Article  PubMed  CAS  Google Scholar 

  • Atomi H (2002) Microbial enzymes involved in carbon dioxide fixation. J Biosci Bioeng 94:497–505

    PubMed  CAS  Google Scholar 

  • Auguet JC, Borrego CM, Baneras L, Casamayor EO (2008) Fingerprinting the genetic diversity of the biotin carboxylase gene (accC) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark. Environ Microbiol 10:2527–2536

    Article  PubMed  CAS  Google Scholar 

  • Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA 107:8889–8894

    Article  PubMed  CAS  Google Scholar 

  • Barton LL (2005) Pathways of carbon flow. In: Structural and functional relationships in prokaryotes. Springer, New York, pp 529–601

  • Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    Article  PubMed  CAS  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Berg IA et al (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  PubMed  CAS  Google Scholar 

  • Blank CE (2009a) Phylogenomic dating—a method of constraining the age of microbial taxa that lack a conventional fossil record. Astrobiology 9:173–191

    Article  PubMed  CAS  Google Scholar 

  • Blank CE (2009b) Phylogenomic dating—the relative antiquity of archaeal metabolic and physiological traits. Astrobiology 9:193–219

    Article  PubMed  CAS  Google Scholar 

  • Boyle NR, Morgan JA (2011) Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab Eng 13:150–158

    Article  PubMed  CAS  Google Scholar 

  • Brandt KK, Ingvorsen K (1997) Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of great salt lake, Utah. Syst Appl Microbiol 20:266–373

    Article  Google Scholar 

  • Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) Aquatic geomicrobiology. Adv Mar Biol 48:1–599

    Article  PubMed  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Phil Trans R Soc B 361:1819–1836

    Article  PubMed  CAS  Google Scholar 

  • Cardenas JP, Valdes J, Quatrini R, Duarte F, Holmes DS (2010) Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl Microbiol Biotechnol 88:605–620

    Article  PubMed  CAS  Google Scholar 

  • Conrad R, Wetter B (1990) Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch Microbiol 155:94–98

    Article  CAS  Google Scholar 

  • Dolfing J, Xu A, Head IM (2010) Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation. ISME J 4:463–464

    Article  PubMed  Google Scholar 

  • Dong H et al (2006) Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51:65–82

    Article  PubMed  CAS  Google Scholar 

  • Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Annu N Y Acad Sci 1125:100–128

    Article  CAS  Google Scholar 

  • Drake HL, Horn MA, Wüst PK (2009) Intermediary ecosystem metabolism as a main driver of methanogenesis in acidic wetland soil. Environ Microbiol Rep 1:307–318

    Article  CAS  Google Scholar 

  • Finster K (2008) Anaerobic bacteria and Archaea in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin

    Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway De Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Evol Microbiol 47:1068–1072

    CAS  Google Scholar 

  • Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658

    Article  PubMed  CAS  Google Scholar 

  • Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Lett 87:297–308

    Article  Google Scholar 

  • Garcia JL, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Moyano A, Gonzalez-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  PubMed  CAS  Google Scholar 

  • Gerday C, Glandsdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, D.C.

    Google Scholar 

  • Goevert D, Conrad R (2010) Stable carbon isotope fractionation by acetotrophic sulfur-reducing bacteria. FEMS Microbiol Ecol 71:218–225

    Article  PubMed  CAS  Google Scholar 

  • Goltsman DS et al (2009) Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 75:4599–4615

    Article  PubMed  CAS  Google Scholar 

  • Golyshina OV, Golyshin PN, Timmis KN, Ferrer M (2006) The ‘pH optimum anomaly’ of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8:416–425

    Article  PubMed  CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Phil Trans R Soc B 359:1249–1267

    Article  PubMed  CAS  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481

    Article  PubMed  CAS  Google Scholar 

  • Hall JR et al (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922

    Article  PubMed  CAS  Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Article  PubMed  Google Scholar 

  • Heimann A, Jakobsen R, Blodau C (2010) Energetic constraints on H2-dependent terminal electron accepting processes in anoxic environments: a review of observations and model approaches. Environ Sci Technol 44:24–33

    Article  PubMed  CAS  Google Scholar 

  • Hoehler TM, Amend JP, Shock EL (2007) A “follow the energy” approach for astrobiology. Astrobiology 7:819–823

    Article  PubMed  CAS  Google Scholar 

  • Hori TF et al (2011) Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. Microbiology 157:1980–1989

    Article  PubMed  CAS  Google Scholar 

  • Huber H et al (2008) A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci USA 105:7851–7856

    Article  PubMed  CAS  Google Scholar 

  • Hugler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci 3:261–289

    Article  PubMed  Google Scholar 

  • Hugler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (1984) Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamm 1924. Int J Syst Bacteriol 34:338–339

    Article  Google Scholar 

  • Imhoff JF, Suling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113

    Article  PubMed  CAS  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch C, Jorgensen BB, Harder J (1999) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments. Appl Environ Microbiol 65:4230–4233

    PubMed  CAS  Google Scholar 

  • Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342

    Article  PubMed  CAS  Google Scholar 

  • Kotelnikova S, Macario AJ, Pedersen K (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48 Pt 2:357–367

    Article  PubMed  CAS  Google Scholar 

  • Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 53:3–13

    Article  PubMed  CAS  Google Scholar 

  • Kotsyurbenko OR et al (2007) Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348

    Article  PubMed  CAS  Google Scholar 

  • Kovaleva OL, Tourova TP, Muyzer G, Kolganova TV, Sorokin DY (2011) Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol 75:37–47

    Article  PubMed  CAS  Google Scholar 

  • Lever MA (2012) Acetogenesis in the energy-starved deep biosphere? A paradox? Frontiers Microbiol 2:284

    Google Scholar 

  • Liu F, Conrad R (2011) Chemolithotrophic acetogenic H2/CO2 utilization in Italian rice field soil. ISME J 5:1526–1539

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  PubMed  CAS  Google Scholar 

  • Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509

    PubMed  CAS  Google Scholar 

  • Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76:157–171

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Martin WF (2011) Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. FEBS Lett 586:485–493

    Article  PubMed  CAS  Google Scholar 

  • McCollom TM, Amend JP (2005) A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144

    Article  CAS  Google Scholar 

  • McInerney MJ et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  PubMed  CAS  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Caumette P, García JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    PubMed  CAS  Google Scholar 

  • Ollivier B et al (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828

    Article  PubMed  Google Scholar 

  • Ollivier B, Patel BK, Garcia JL (2000) Anaerobes from extreme environments. In: Seckbach J (ed) Journey to diverse microbial worlds. Kluwer Academic Publishers, The Netherlands, pp 75–90

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:2

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136

    CAS  Google Scholar 

  • Paper W et al (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol 57:803–808

    Article  PubMed  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  PubMed  CAS  Google Scholar 

  • Pitriuk AV, Detkova EN, Pusheva MA (2004) Comparative study of the energy metabolism of anaerobic alkaliphiles from soda lakes. Mikrobiologiia 73:293–299

    PubMed  CAS  Google Scholar 

  • Raymond J (2005) The evolution of biological carbon and nitrogen cycling, a genomic perspective. Rev Mineral Geochem 59:211–231

    Article  CAS  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw Hill, New York

    Google Scholar 

  • Rui J, Qiu Q, Lu Y (2011) Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 77:264–273

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Andrea I, Rodriguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093

    Article  PubMed  CAS  Google Scholar 

  • Sanz JL, Rodriguez N, Diaz EE, Amils R (2011) Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environ Microbiol 13:2336–2341

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  Google Scholar 

  • Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. Represents a Novel genus of anaerobic, extremely Thermoacidophilic Archaebacteria of the Order Sulfolobales. Int J Syst Bacteriol 41:495–501

    Article  Google Scholar 

  • Sikorski J et al (2010) Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288). Stand Genomic Sci 3:57–65

    Article  PubMed  Google Scholar 

  • Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Detkova EN, Muyzer G (2010) Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 14:71–77

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44

    PubMed  Google Scholar 

  • Sorokin DY, Zacharova EE, Pimenov NV, Tourova TP, Panteleeva AN, Muyzer G (2012) Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 79:445–453

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan V, Morowitz HJ, Huber H (2012) What is an autotroph? Arch Microbiol 194:135–140

    Article  PubMed  CAS  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  PubMed  CAS  Google Scholar 

  • Stein SE, Sharon GL, Liebman JF, Rhoda DL, Sherif AK (1994) Structures and properties (NIST Standard Reference Database 25). In: Gaithersburg (ed), 2.01 edn. National Institute of Standards and Technology

  • Tang KH, Blankenship RE (2010) Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 285:35848–35854

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thullner M, Regnier P, Van Cappellen P (2007) Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions. Geomicrobiol J 24:139–155

    Article  CAS  Google Scholar 

  • Tourova TP, Kovaleva OL, Sorokin DY, Muyzer G (2010) Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 156:2016–2025

    Article  PubMed  CAS  Google Scholar 

  • Valdes J et al (2010) Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy 104:471–476

    Article  CAS  Google Scholar 

  • Valentine DL (2004) Thermodynamic ecology of hydrogen-based syntrophy. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 149–161

    Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  PubMed  CAS  Google Scholar 

  • Vandieken V, Mußmann M, Niemann H, Jørgensen BB (2006) Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Venkata-Ramana V, Sasikala C, Veera-Venkata-Ramaprasad E, Venkata-Ramana C (2010) Description of Ectothiorhodospira salini sp. nov. J Gen Appl Microbiol 56:313–319

    Article  PubMed  Google Scholar 

  • Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA (1996) Natroniella acetigena gen. nov. sp. nov., an extremely Haloalkaliphilic, Homoacetic Bacterium: a new member of Haloanaerobiales. Curr Microbiol 32:320–326

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN et al (2011) Fuchsiella alkaliacetigena gen. nov., sp. nov., the first alkaliphilic, lithoautotrophic homoacetogenic bacterium. Int J Syst Evol Microbiol 62:1666–1673

Download references

Acknowledgments

We thank to Dr. José Luis Sanz for critically reading this manuscript and his valuable comments. Lilia Montoya acknowledges the support of an institutional grant (IPICYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Montoya.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montoya, L., Celis, L.B., Razo-Flores, E. et al. Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes. Extremophiles 16, 805–817 (2012). https://doi.org/10.1007/s00792-012-0487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0487-3

Keywords

Navigation