Skip to main content

The Phylum Thaumarchaeota

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Thaumarchaeota represent a unique phylum within the domain Archaea that embraces ammonia-oxidizing organisms from soil, marine waters, and hot springs (currently two pure cultures and 13 enrichments), as well as many lineages represented only by environmental sequences from virtually every habitat that has been screened. All cultivated Thaumarchaeota perform the first step in nitrification, i.e., they oxidize ammonia to nitrite aerobically. They live under autotrophic conditions and fix CO2, but some are dependent on the presence of other bacteria or small amounts of organic material. Different from bacterial ammonia oxidizers, all cultivated Thaumarchaeota are adapted to comparably low amounts of substrate (ammonia) and inhabit not only moderate but also extreme environments, such as hot springs and acidic soils. All cultivated strains contain tetraether lipids with crenarchaeol, a Thaumarchaeota-specific core lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves RJ, Wanek W, Zappe A, Richter A, Svenning MM, Schleper C, Urich T (2013) Nitrification rates in arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J 7(8):1620–1631, Mar 7 (early online)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adair KL, Schwartz E (2008) Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb Ecol 56:420–426

    CAS  PubMed  Google Scholar 

  • Agogue H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying archaea in the deep north Atlantic. Nature 456:788–792

    CAS  PubMed  Google Scholar 

  • Alonso-Saez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL et al (2012) Role for urea in nitrification by polar marine archaea. Proc Natl Acad Sci USA 109:17989–17994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C (2010) Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 12(4):1075–1088

    CAS  PubMed  Google Scholar 

  • Bartossek R, Spang A, Weidler G, Lanzen A, Schleper C (2012) Metagenomic analysis of ammonia-oxidizing archaea affiliated with the soil group. Front Microbiol 3:208–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belser LW, Schmidt EL (1981) Inhibitory effect of nitrapyrin on three genera of ammonia-oxidizing nitrifiers. Appl Environ Microbiol 41:819–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:1782–1786

    CAS  PubMed  Google Scholar 

  • Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6:e16626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729

    CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2008) A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of archaea and Eucarya. Biol Direct 3:54

    PubMed Central  PubMed  Google Scholar 

  • Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the archaea: one hundred genomes later. Curr Opin Microbiol 14:274–281

    PubMed  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2012) Spotlight on the Thaumarchaeota. ISME J 6:227–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckley DH, Graber JR, Schmidt TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333–4339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic archaea and bacteria in the waters west of the Antarctic peninsula. Limnol Oceanogr 48:1893–1902

    Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cubonova L, Sandman K, Hallam SJ, Delong EF, Reeve JN (2005) Histones in crenarchaea. J Bacteriol 187:5482–5485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damste JS, Rijpstra WI, Hopmans EC, Jung MY, Kim JG, Rhee SK et al (2012) Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a And I.1b Thaumarchaeota in soil. Appl Environ Microbiol 78:6866–6874

    PubMed Central  Google Scholar 

  • Dang H, Luan XW, Chen R, Zhang X, Guo L, Klotz MG (2010) Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol 72:370–385

    CAS  PubMed  Google Scholar 

  • de la Torre JR, Walker CB, Ingalls AE, Konneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    PubMed  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeLong EF, Wu KY, Prezelin BB, Jovine RVM (1994) High abundance of archaea in Antarctic marine picoplankton. Nature 371:695–697

    CAS  PubMed  Google Scholar 

  • DeLong EF (1998) Everything in moderation: archaea as ‘non-extremophiles’. Curr Opin Genet Dev 8:649–654

    CAS  PubMed  Google Scholar 

  • DeLong EF, King LL, Massana R, Cittone H, Murray A, Schleper C et al (1998) Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Appl Environ Microbiol 64:1133–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S et al (2010) Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    CAS  PubMed  Google Scholar 

  • Dodsworth JA, Hungate BA, Hedlund BP (2011) Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US great basin hot springs with abundant ammonia-oxidizing archaea. Environ Microbiol 13:2371–2386

    CAS  PubMed  Google Scholar 

  • Durbin AM, Teske A (2010) Sediment-associated microdiversity within the marine group I Crenarchaeota. Environ Microbiol Rep 2:693–703

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869

    CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    CAS  PubMed Central  PubMed  Google Scholar 

  • French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A (2012) Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 78:5773–5780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    CAS  PubMed  Google Scholar 

  • Garrett RA, Vestergaard G, Shah SA (2011) Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 19:549–556

    CAS  PubMed  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    CAS  PubMed  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J et al (2006) Genomic analysis of the uncultivated marine Crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H et al (2008) A moderately thermophilic ammonia-oxidizing Crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatzenpichler R (2012) Diversity, physiology and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510

    CAS  PubMed Central  PubMed  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG et al (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374

    CAS  PubMed  Google Scholar 

  • Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A et al (2005) Contribution of archaea to total prokaryotic production in the deep Atlantic ocean. Appl Environ Microbiol 71:2303–2309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hershberger KL, Barns SM, Reysenbach AL, Dawson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature 384:420

    CAS  PubMed  Google Scholar 

  • Hollibaugh JT, Gifford S, Sharma S, Bano N, Moran MA (2011) Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage. ISME J 5:866–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper AB, Terry KR (1973) Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 115:480–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ERM et al (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci USA 103:6442–6447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    CAS  PubMed  Google Scholar 

  • Jorgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K, Fonseca R et al (2012) Correlating microbial community profiles with geochemical data in highly stratified sediments from the arctic Mid-ocean ridge. Proc Natl Acad Sci USA 109:E2846–E2855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung MY, Park SJ, Min D, Kim JS, Rijpstra WIC, Damste JSS et al (2011) Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a From an agricultural soil. Appl Environ Microbiol 77:8635–8647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurgens G, Lindstrom K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63:803–805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jurgens G, Glöckner F, Amann R, Saano A, Montonen L, Likolammi M et al (2000) Identification of novel archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization1. FEMS Microbiol Ecol 34:45–56

    CAS  PubMed  Google Scholar 

  • Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing archaea in the arctic ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445

    CAS  PubMed  Google Scholar 

  • Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, DeLong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478

    CAS  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the pacific ocean. Nature 409:507–510

    CAS  PubMed  Google Scholar 

  • Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK et al (2011) Genome sequence of an ammonia-oxidizing soil archaeon, “Candidatus Nitrosoarchaeum koreensis” MY1. J Bacteriol 193:5539–5540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JG, Jung MY, Park SJ, Rijpstra WIC, Damste JSS, Madsen EL et al (2012) Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b From an agricultural soil. Environ Microbiol 14:1528–1543

    CAS  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    PubMed  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    CAS  PubMed  Google Scholar 

  • Krupovic M, Spang A, Gribaldo S, Forterre P, Schleper C (2011) A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Biochem Soc Trans 39:82–88

    CAS  PubMed  Google Scholar 

  • Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 108:15892–15897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    CAS  PubMed  Google Scholar 

  • Limpiyakorn T, Furhacker M, Haberl R, Chodanon T, Srithep P, Sonthiphand P (2013) AmoA-encoding archaea in wastewater treatment plants: a review. Appl Microbiol Biotechnol 97:1425–1439

    CAS  PubMed  Google Scholar 

  • Loescher CR, Kock A, Koenneke M, LaRoche J, Bange HW, Schmitz RA (2012) Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosci Discuss 9:2095–2122

    Google Scholar 

  • Lu L, Han W, Zhang J, Wu Y, Wang B, Lin X et al (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6:6

    Google Scholar 

  • Lu L, Jia Z (2012) Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol [Epub ahead of print]

    Google Scholar 

  • MacGregor BJ, Moser DP, Alm EW, Nealson KH, Stahl DA (1997) Crenarchaeota in Lake Michigan sediment. Appl Environ Microbiol 63:1178–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–979

    CAS  PubMed  Google Scholar 

  • Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara channel. Appl Environ Microbiol 63:50–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T (2011) Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microbes Environ 26:23–29

    PubMed  Google Scholar 

  • McInerney JO, Wilkinson M, Patching JW, Embley TM, Powell R (1995) Recovery and phylogenetic analysis of novel archaeal ribosomal-Rna sequences from a deep-Sea deposit feeder. Appl Environ Microbiol 61:1646–1648

    CAS  PubMed Central  PubMed  Google Scholar 

  • McInerney JO, Mullarkey M, Wernecke ME, Powell R (1997) Phylogenetic analysis of Group I marine archaeal rRNA sequences emphasizes the hidden diversity within the primary group Archaea. Proc Roy Soc B-Biol Sci 264:1663–1669

    CAS  Google Scholar 

  • Merbt SN, Stahl DA, Casamayor EO, Marti E, Nicol GW, Prosser JI (2012) Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett 327:41–46

    CAS  PubMed  Google Scholar 

  • Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA et al (2012) Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337:1104–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the north pacific subtropical gyre. Environ Microbiol 9:1162–1175

    CAS  PubMed  Google Scholar 

  • Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA (2012a) Genome sequence of “Candidatus Nitrosopumilus salaria” BD31, an ammonia-oxidizing archaeon from the San Francisco Bay estuary. J Bacteriol 194:2121–2122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA (2012b) Genome sequence of “Candidatus Nitrosoarchaeum limnia” BG20, a Low-salinity ammonia-oxidizing archaeon from the San Francisco Bay estuary. J Bacteriol 194:2119–2120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosier AC, Lund MB, Francis CA (2012c) Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 64:955–963

    CAS  PubMed  Google Scholar 

  • Muller F, Brissac T, Le Bris N, Felbeck H, Gros O (2010) First description of giant Archaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in a sulfidic marine habitat. Environ Microbiol 12:2371–2383

    CAS  PubMed  Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K et al (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mussmann M, Brito I, Pitcher A, Damste JSS, Hatzenpichler R, Richter A et al (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA 108:16771–16776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    CAS  PubMed  Google Scholar 

  • Nicol GW, Leininger S, Schleper C (2011) Distribution and activity of ammonia-oxidizing archaea in natural environments. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. ASM Press, Washington (DC), pp 157–178

    Google Scholar 

  • Nunoura T, Hirayama H, Takami H, Oida H, Nishi S, Shimamura S et al (2005) Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ Microbiol 7:1967–1984

    CAS  PubMed  Google Scholar 

  • Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H et al (2011) Insights into the evolution of archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–3223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    CAS  PubMed  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    CAS  PubMed  Google Scholar 

  • Ouverney CC, Fuhrman JA (2000) Marine planktonic archaea take up amino acids. Appl Environ Microbiol 66:4829–4833

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papendick RI, Engibous JC (1980) Performance of nitrification inhibitors in the northwest. In: Meisinger JJ, Randall GW, Vitosh ML (eds) Nitrification inhibitors—potentials and limitations. ASA/SSSA, Madison, pp 107–117

    Google Scholar 

  • Park BJ, Park SJ, Yoon DN, Schouten S, Damste JSS, Rhee SK (2010) Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 76:7575–7587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643–5647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelve EA, Lindås A, Martens-Habbena W, de la Torre JR, Stahl DA, Bernander R (2011) Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus. Mol Microbiol 82:555–566

    CAS  PubMed  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pester M, Rattei T, Flechl S, Grongroft A, Richter A, Overmann J et al (2012) AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WIC, Ossebaar J et al (2010) Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I. 1b Archaeon. ISME J 4:542–552

    CAS  PubMed  Google Scholar 

  • Pitcher A, Mosier AC, Park S, Rhee SK, Francis CA, Schouten S et al (2011) Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl Environ Microbiol 77:3468–3477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci USA 108:4170–4175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Probst AJ, Auerbach AK, Moissl-Eichinger C (2013) Archaea on Human Skin. PLoS One 8

    Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    CAS  PubMed  Google Scholar 

  • Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C (2012a) Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol 14:909–923

    CAS  PubMed  Google Scholar 

  • Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T et al (2012b) Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol 14:1308–1324

    CAS  PubMed  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    CAS  PubMed  Google Scholar 

  • Reeve JN, Schleper C (2011) Archaea: very diverse, often different but never bad? Curr Opin Microbiol 14:271–273

    PubMed  Google Scholar 

  • Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167–174

    CAS  PubMed  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS 3rd, Lambin EF et al (2009) A safe operating space for humanity. Nature 461:472–475

    PubMed  Google Scholar 

  • Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333:1282–1285

    CAS  PubMed  Google Scholar 

  • Santoro AE, Casciotti KL (2011) Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 5:1796–1808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauder LA, Engel K, Stearns JC, Masella AP, Pawliszyn R, Neufeld JD (2011) Aquarium nitrification revisited: Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters. PLoS One 6:e23281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauder LA, Peterse F, Schouten S, Neufeld JD (2012) Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environ Microbiol 14:2589–2600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schleper C, Holben W, Klenk HP (1997a) Recovery of crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl Environ Microbiol 63:321–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schleper C, Swanson RV, Mathur EJ, DeLong EF (1997b) Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol 179:7803–7811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    CAS  PubMed  Google Scholar 

  • Schleper C, Nicol GW (2010) Ammonia-oxidising archaea—physiology, ecology and evolution. Adv Microb Physiol 57:1–41

    CAS  PubMed  Google Scholar 

  • Schouten S, Hopmans EC, Baas M, Boumann H, Standfest S, Könneke M et al (2008) Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”, a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota. Appl Environ Microbiol 74:2433–2440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    CAS  PubMed  Google Scholar 

  • Shen TL, Stieglmeier M, Dai JL, Urich T, Schleper C (2013) Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 344:121–129

    CAS  PubMed  Google Scholar 

  • Shi W, Norton JM (2000) Effect of long-term, biennial, fall-applied anhydrous ammonia and nitrapyrin on soil nitrification. Soil Sci Soc Am J 64:228–234, Contribution from the Utah agric. Exp. Stn. As journal no. 7151

    CAS  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E et al (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    CAS  PubMed  Google Scholar 

  • Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N et al (2012) The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 14:3122–3145

    CAS  PubMed  Google Scholar 

  • Stahl DA, de la Torre JR (2012) Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66:83–101

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Stieglmeier M, Klingl A, Alves RJE, Rittman S, Melcher M, Leisch N, Schleper C (2014) Nitrososphaera viennensis sp. nov., an aerobic and mesophilic ammonia-oxidizing archaeon from soil and member of the novel archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol. Manuscript in review

    Google Scholar 

  • Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S, Richter A, Schleper C (2014) Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J doi: 10.1038/ismej.2013.220 [Epub ahead of print]

    Google Scholar 

  • Stopnisek N, Gubry-Rangin C, Hofferle S, Nicol GW, Mandic-Mulec I, Prosser JI (2010) Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 76:7626–7634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep south African gold mines. Appl Environ Microbiol 67:5750–5760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ (2004) Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl Environ Microbiol 70:4411–4414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364

    CAS  PubMed  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Konneke M, Schintlmeister A, Urich T et al (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108:8420–8425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    CAS  PubMed  Google Scholar 

  • Tully BJ, Nelson WC, Heidelberg JF (2012) Metagenomic analysis of a complex marine planktonic thaumarchaeal community from the gulf of Maine. Environ Microbiol 14:254–267

    CAS  PubMed  Google Scholar 

  • Urakawa H, Martens-Habbena W, Stahl DA (2011) Physiology and genomics of ammonia-oxidizing archaea. In: Ward BB, Arp DJ, Klotz MG (eds) Nitrification. ASM Press, Washington (DC), pp 117–155

    Google Scholar 

  • Vajrala N, Martens-Habbena W, Sayavedra-Soto LA, Schauer A, Bottomley PJ, Stahl DA et al (2013) Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proc Natl Acad Sci USA 110:1006–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ et al (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107:8818–8823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–251

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    CAS  Google Scholar 

  • Wuchter C, Schouten S, Boschker HT, Sinninghe Damste JS (2003) Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol Lett 219:203–207

    CAS  PubMed  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P et al (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu MZ, Schnorr J, Keibler B, Simon HM (2012) Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 78:2137–2146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan J, Haaijer SC, Op den Camp HJ, van Niftrik L, Stahl DA, Konneke M et al (2012) Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic Bacterial ammonia oxidizers in a laboratory-scale model system. Environ Microbiol 14:3146–3158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zacherl B, Amberger A (1990) Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea. Fertilizer Res 22:37–44

    CAS  Google Scholar 

  • Zhalnina K, de Quadros PD, Camargo FA, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang CL, Ye Q, Huang ZY, Zhao WD, Romanek C, Mills G et al (2007) Predominance of Crenarchaeota and putative archaeal ammonia-oxidizing metabolism in terrestrial hot springs. J China Univ Geosci 18:359–360

    Google Scholar 

  • Zhang CL, Ye Q, Huang ZY, Li WJ, Chen JQ, Song ZQ et al (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74:6417–6426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA 107:17240–17245

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all authors whose papers have not been cited in this chapter due to space limitation. We thank Anja Spang for critical reading of the manuscript. MS was funded by the Austrian Science Fund project P23000, and RA was funded through ESF project CryoCARB and project P25369 from the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa Schleper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Stieglmeier, M., Alves, R.J.E., Schleper, C. (2014). The Phylum Thaumarchaeota. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_338

Download citation

Publish with us

Policies and ethics