Skip to main content
Log in

Can zoosporic true fungi grow or survive in extreme or stressful environments?

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Zoosporic true fungi are thought to be ubiquitous in many ecosystems, especially in cool, moist soils and freshwater habitats which are rich in organic matter. However, some of the habitats where these fungi are found may periodically experience extreme conditions, such as soils in extremely dry, hot and cold climates, acidic and alkaline soils, polluted rivers, anaerobic soil and water, saline soil and water, periglacial soils, oligotrophic soils, tree canopies and hydrothermal vents. It is clear that many ecotypes of zoosporic true fungi have indeed adapted to extreme or stressful environmental conditions. This conclusion is supported by studies in both the field and in the laboratory. Therefore, in our opinion, at least some true zoosporic fungi can be considered to be extremophiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral Zettler LA, Goimez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of fire. Nature 417:137

    Article  CAS  PubMed  Google Scholar 

  • Amon JP (1984) Rhizophydium littoreum: a chytrid from siphonaceous marine algae- an ultrastructural examination. Mycologia 76:132–139

    Article  Google Scholar 

  • Amon JP, Arthur RD (1981) Nutritional studies of a marine Phlyctochytrium sp. Mycologia 73:1049–1055

    Article  CAS  Google Scholar 

  • Barr DJS (1969) Studies on Rhizophydium and Phlyctochytrium (Chytridiales). II. Comparative physiology. Can J Bot 47:999–1005

    Article  Google Scholar 

  • Barr DJS (1970) Phlyctochytrium arcticum n. sp. (Chytridiales); morphology and physiology. Can J Bot 48:2279–2283

    Article  CAS  Google Scholar 

  • Barr DJS (1984) The classification of Spizellomyces, Gaertneriomyces, Triparticalcar, and Kochiomyces (Spizellomycetales, Chytridiomycetes). Can J Bot 62:1171–1201

    Article  Google Scholar 

  • Barr DJS (1987) Isolation, culture and identification of Chytridiales, Spizellomycetales and Hyphochytriales. In: Fuller MS, Jaworski A (eds) Zoosporic fungi in teaching and research. Southeastern Publishing Corporation, Athens, pp 118–120

    Google Scholar 

  • Barr DJS (2001) 5. Chytridiomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol VII, Part A. Springer, New York, pp 93–112

    Google Scholar 

  • Barron GL (2004) 19. Fungal parasites and predators of rotifers, nematodes, and other invertebrates. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic Press, Amsterdam, pp 435–450

    Google Scholar 

  • Bernstein LB (1968) A biosystematic study of Rhizophlyctis rosea with emphasis on zoospore variability. J Elisha Mitchell Sci Soc 84:84–93

    Google Scholar 

  • Bills GF, Christensen M, Powell M, Thorn G (2004) 13. Saprophytic soil fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic Press, Amsterdam, pp 303–315

    Google Scholar 

  • Boddy L, Wimpenny JWT (1992) Ecological concepts in food microbiology. J Appl Bacteriol 73:23–28

    Google Scholar 

  • Booth T (1971a) Distribution of certain soil inhabiting chytrid and chytridaceous species related to some physical and chemical factors. Can J Bot 49:1743–1755

    Article  Google Scholar 

  • Booth T (1971b) Ecotypic responses of chytrid and chytridiaceous species to various salinity and temperature combinations. Can J Bot 49:1757–1767

    Article  Google Scholar 

  • Booth T, Barrett P (1971) Occurrence and distribution of zoosporic fungi from Devon Island, Canadian Eastern Arctic. Can J Bot 49:359–369

    Article  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Article  Google Scholar 

  • Campbell RN (1985) Longevity of Olpidium brassicae in air-dried soil and the persistence of the lettuce big-vein agent. Can J Bot 63:2288–2289

    Article  Google Scholar 

  • Canter HM (1967) Studies on British chytrids XXVI. A critical examination of Zygorhizidium melosirae Canter and Z. planktonicum Canter SO. J Linn Soc Lond 60:85–97

    Google Scholar 

  • Canter HM, Lund JWG (1948) Studies on plankton parasites. I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytol 47:238–261

    Article  Google Scholar 

  • Canter HM, Lund JWG (1951) Studies on plankton parasites: III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann Bot 15:359–371

    Google Scholar 

  • Cantino EC, Turian GF (1959) Physiology and development of lower fungi (Phycomycetes). Ann Rev Microbiol 13:97–124

    Article  Google Scholar 

  • Commandeur Z, Letcher PM, McGee PA (2005) Diversity of chytridiaceous fungi in a cropping soil. Austral Mycol 24:1–6

    Google Scholar 

  • Couch JN (1945) Observations on the genus Catenaria. Mycologia 37:163–193

    Article  Google Scholar 

  • Digby AL, Gleason FH, McGee PA (2010) Some fungi in the Chytridiomycota can assimilate both inorganic and organic sources of nitrogen. Fungal Ecol 3:261–266

    Article  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Google Scholar 

  • Dogma IJ Jr (1972) Developmental and taxonomic studies on rhizophlyctoid fungi, Chytridiales. II. The Karlingia (Rhizophlyctis) rosea-complex. Nova Hedwigia 25:1–49

    Google Scholar 

  • Emerson R (1941) An experimental study of the life cycles and taxonomy of Allomyces. Lloydia 4:77–144

    Google Scholar 

  • Emerson R, Natvig DO (1981) Adaptation of fungi to stagnant waters. In: Wicklow DT, Carroll GC (eds) The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York, pp 109–128

    Google Scholar 

  • Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. PNAS 106:18315–18320

    Article  CAS  PubMed  Google Scholar 

  • Gleason FH, Gordon GRL (1988) Anaerobic growth and fermentation in Blastocladia. Mycologia 81:811–815

    Article  Google Scholar 

  • Gleason FH, Macarthur DJ (2008) The chytrid epidemic revisited. Inoculum 59(2):1–3

    Google Scholar 

  • Gleason FH, McGee PA (2008) Chytrids cannot survive at high temperatures in liquid growth media: implications for soil ecosystems. Fungal Ecol 1:99–101

    Article  Google Scholar 

  • Gleason FH, Letcher PM, McGee PA (2004) Some Chytridiomycota in soil recover from drying and high temperatures. Mycol Res 108:583–589

    Article  PubMed  Google Scholar 

  • Gleason FH, Letcher PM, Commandeur Z, Jeong CE, McGee PA (2005) The growth response of some Chytridiomycota to temperatures commonly observed in the soil. Mycol Res 109:717–722

    Article  PubMed  Google Scholar 

  • Gleason FH, Midgley DJ, Letcher PM, McGee PA (2006) Can soil Chytridiomycota survive and grow in different osmotic potentials? Mycol Res 110:869–875

    Article  PubMed  Google Scholar 

  • Gleason FH, Mozley-Standridge SE, Porter D, Boyle DG, Hyatt A (2007a) Preservation of Chytridiomycota in culture collections. Mycol Res 111:129–136

    Article  PubMed  Google Scholar 

  • Gleason FH, Letcher PM, McGee PA (2007b) Some aerobic Blastocladiomycota and Chytridiomycota can survive but cannot grow under anaerobic conditions. Austral Mycol 26:57–64

    Google Scholar 

  • Gleason FH, Kagami M, Lefèvre E, Sime-Ngando T (2008a) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 2:17–25

    Article  Google Scholar 

  • Gleason FH, Letcher PM, McGee PA (2008b) Freeze tolerance of soil chytrids from temperate climates in Australia. Mycol Res 112:976–982

    Article  PubMed  Google Scholar 

  • Gleason FH, Daynes CN, McGee PA (2010) Some zoosporic fungi can grow and survive within a wide pH range. Fungal Ecol 3:31–37

    Article  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge S, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    Article  PubMed  Google Scholar 

  • Johnson ML, Berger L, Philips L, Speare R (2003) Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. DAO 57:255–260

    Article  CAS  Google Scholar 

  • Karling JS (1977) Chytridiomycetarum iconographia. J. Cramer, Monticello

    Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2001) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105:749–756

    Article  Google Scholar 

  • Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microbial Ecol 45:183–190

    Article  CAS  Google Scholar 

  • Kuznetsov EA (1981) Anabiosis of lower fungi. Mycol Phytopathol 15:526–531

    Google Scholar 

  • Laidlaw WMR (1985) A method for detection of the resting sporangia of potato wart disease (Synchytrium endobioticuim) in the soil of old outbreak sites. Potato Res 28:223–232

    Article  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  CAS  PubMed  Google Scholar 

  • Lee E-J (2000) Chytrid distribution in diverse boreal Manitoba sites. Korean J Biol Sci 4:57–62

    Google Scholar 

  • Letcher PM, Powell MJ, Barr DJS, Churchill PF, Wakefield WS, Picard KT (2008a) Rhizophlyctidales––a new order in Chytridiomycota. Mycol Res 112:1031–1048

    Article  PubMed  Google Scholar 

  • Letcher PM, Vélez CG, Barrantes ME, Powell MJ, Churchill PF, Wakefield WS (2008b) Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina. Mycol Res 112:759–782

    Article  PubMed  Google Scholar 

  • Ley RE, Williams MW, Schmidt SK (2004) Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68:313–335

    Article  CAS  Google Scholar 

  • Lilje O, Lilje E (2008) Fluctuation in Rhizophydium sp. (AUS 6) zoospore production and biomass during colony formation. Austral Mycol 27:20–32

    Google Scholar 

  • Lockhart RJ, van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72:5659–5661

    Article  CAS  PubMed  Google Scholar 

  • Longcore JE (2001) Chytridiomycota. In: Encyclopedia of Life Sciences. Nature Publishing Group, New York, pp 1–8

  • Longcore JE (2004) Zoosporic fungi from Australian and New Zealand tree-canopy detritus. Austral J Bot 53:259–272

    Article  Google Scholar 

  • Lowe SE, Theororou MK, Trinci APJ (1987) Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Appl Environ Microbiol 53:1210–1215

    CAS  PubMed  Google Scholar 

  • Lozupone CA, Klein DA (2002) Molecular and cultural assessment of chytrid and Spizellomyces populations in grassland soils. Mycologia 94:411–420

    Article  CAS  Google Scholar 

  • Machlis L, Crasemann JM (1956) Physiological variation between the generations and among the strains of watermolds in the subgenus Euallomyces. Am J Bot 43:601–611

    Article  CAS  Google Scholar 

  • Mackie RI, Rycyk M, Ruemmler RL, Aminov RI, Wikelski M (2004) Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos Archipelago. Physiol Biochem Zool 77:127–138

    Article  PubMed  Google Scholar 

  • McGee PA (1989) Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil. Mycol Res 92:28–33

    Article  Google Scholar 

  • McGranaghan P, Davies JC, Griffith GW, Davies DR, Theodororou MK (1999) The survival of anaerobic fungi in cattle faeces. FEMS Microbiol Ecol 29:293–300

    Article  CAS  Google Scholar 

  • Midgley DJ, Letcher PM, McGee PA (2006) Access to organic and insoluble sources of phosphorus varies among soil Chytridiomycota. Arch Microbiol 186:211–217

    Article  CAS  PubMed  Google Scholar 

  • Müller DG, Küpper FC, Küpper H (1999) Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol Res 47:217–223

    Article  Google Scholar 

  • Nielsen TAB (1982) Comparative studies of the physiology of Allomyces species. Trans Br Mycol Soc 78:83–88

    Article  Google Scholar 

  • Nolan RA (1985) 6. Physiology and biochemistry. In: Couch JN, Bland CE (eds) The Genus Coelomomyces. Academic Press, New York, pp 321–348

    Google Scholar 

  • Nyvall P, Pedersen M, Longcore J (1999) Thalassochytrium gracilariopsidis (Chytridiomycota), gen. et sp. nov., endosymbiotic in Gracilariopsis sp. (Rhodophyceae). J Phycol 35:176–185

    Article  Google Scholar 

  • Oarga A (2009) Life in extreme environments. Rev Biol Cienc Terra 9:1–10

    Google Scholar 

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    Article  Google Scholar 

  • Powell MJ (1993) Looking at mycology with a janus face: a glimpse at Chytridiomycetes active in the environment. Mycologia 85:1–20

    Article  Google Scholar 

  • Rezaeian M, Beakes GW, Parker DS (2004) Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems. Mycol Res 108:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SK, Wilson KL, Monson RK, Lipson DA (2009a) Exponential growth of “snow molds” at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q10 values. Biogeochemistry 95:13–21

    Article  Google Scholar 

  • Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009b) Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816

    Article  CAS  PubMed  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thornton HA, Voglmayr H (2007) Fungal biodiversity in aquatic habitats. Biodiv Conserv 16:49–67

    Article  Google Scholar 

  • Simmons DR (2007) Systematics of the Lobulomycetales, a new order within the Chytridiomycota. MS Thesis, University of Maine

  • Simmons DR, James TY, Meyer AF, Longcore JE (2009) Lobulomycetales, a new order in the Chytridiomycota. Mycol Res 113:450–460

    Article  CAS  PubMed  Google Scholar 

  • Sparrow FK (1960) Aquatic Phycomycetes, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Tansey MR, Jack MA (1976) Thermophilic fungi in sun-heated soils. Mycologia 68:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Theodorou MK, Davies DR, Orpin CG (1994) Nutrition and survival of anaerobic fungi. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi: biology, ecology and function. Marcel Dekker, New York, pp 107–128

    Google Scholar 

  • Thorsen MS (1999) Abundance and biomass of the gut-living microorganisms (bacteria, protozoa and fungi) in the irregular sea urchin Echinocardium cordatum (Spatangoida: Echinodermata). Mar Biol 133:353–360

    Article  Google Scholar 

  • Tomlinson JA, Faithfull EM (1979) Effects of fungicides and surfactants on the zoospores of Olpidium brassicae. Ann Appl Biol 93:13–19

    Article  CAS  Google Scholar 

  • Trinci APJ, Davies DR, Gull K, Lawrence M, Nielsen BB, Rickers A, Theodorou MK (1994) Anaerobic fungi in herbivorous animals. Mycol Res 98:129–152

    Article  Google Scholar 

  • Wakefield WS, Powell MJ, Letcher PM, Barr DJS, Churchill PF, Longcore JE, Chen S-F (2010) A molecular phylogenetic evaluation of the Spizellomycetales. Mycologia 102:596–604

    Article  CAS  PubMed  Google Scholar 

  • Wallenstein MD, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435

    Article  CAS  PubMed  Google Scholar 

  • Whisler HC (1987) Isolation and culture of the water molds: the Blastocladiales and Monoblepharidales. In: Fuller MS, Jaworski A (eds) Zoosporic fungi in teaching and research. Southeastern Publishing Corporation, Athens, pp 121–124

    Google Scholar 

  • Willoughby LG (2001) The activity of Rhizophlyctis rosea in soil: some deductions from laboratory observations. Mycologist 15:113–117

    Article  Google Scholar 

  • Youatt J (1991a) Maturation of meiosporangia in Allomyces macrogynus. Mycol Res 95:495–498

    Article  Google Scholar 

  • Youatt J (1991b) Development of asexual organisms from meiospores of Allomyces macrogynus. Mycol Res 95:1127–1130

    Article  Google Scholar 

  • Zack JC, Wildman HG (2004) 14. Fungi in stressful environments. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic Press, Amsterdam, pp 303–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank H. Gleason.

Additional information

Communicated by T. Matsunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleason, F.H., Schmidt, S.K. & Marano, A.V. Can zoosporic true fungi grow or survive in extreme or stressful environments?. Extremophiles 14, 417–425 (2010). https://doi.org/10.1007/s00792-010-0323-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0323-6

Keywords

Navigation