Skip to main content

9 Ecological and Economical Importance of Parasitic Zoosporic True Fungi

  • Chapter
  • First Online:
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Species of zoosporic true fungi have been observed by light microscopy in terrestrial, freshwater, and marine habitats. Most of the described species are saprotrophs or mutualists, but some species are parasites of higher plants, animals, and phytoplankton. Some species play significant ecological roles or cause economically important diseases. A few may cause emerging infectious diseases. Many other species are known only from rDNA sequences obtained from environmental surveys. Unfortunately, in general zoosporic true fungi have been poorly sampled and poorly studied. We predict that many more species will be discovered in the future. Ten examples from three taxonomic groups (Chytridiomycota, Blastocladiomycota, and the Olpidium clade) are discussed in this chapter. The pathosystem model provides an excellent basis for understanding host–parasite relationships and the effect of environmental parameters on these microorganisms. The important ecological roles of zoosporic parasites in food-web dynamics are highlighted. These fungi are particularly well-adapted to their environments because of motile zoospores and resistant sporangia.

All three authors contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JA, Bowser SS, Bragerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of Eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Apperson CS, Federici BA, Tarver FR, Stewart W (1992) Biotic and abiotic parameters associated with an epizootic of Coelomomyces punctatus during in a larval population of the mosquito Anopheles quadrimaculatus. J Invertebr Pathol 60:219–228

    PubMed  CAS  Google Scholar 

  • Arroyo-Begovich A, Cárabez-Trejo A (1982) Location of chitin in the cyst wall of Entamoeba invadens with colloidal gold racers. J Parasitol 68:253–258

    PubMed  CAS  Google Scholar 

  • Baldauf SL (2003) The deep roots of Eukaryotes. Science 300:1703–1706

    PubMed  CAS  Google Scholar 

  • Barr DJS (1973) Rhizophydium graminis (Chytridiales): morphology, host range, and temperature effect. Can Plant Dis Survey 53:191–193

    Google Scholar 

  • Barr DJS (2001) Chytridiomycota. In: McLaughlin DL, McLaughlin EG, Lemke PA (eds) The mycota, vol VII, Part A. Springer, New York, pp 93–112

    Google Scholar 

  • Barr DJS, Hickman CJ (1967a) Chytrids and algae I. Host-substrate range, and morphological variation of species of Rhizophydium. Can J Bot 45:423–430

    Google Scholar 

  • Barr DJS, Hickman CJ (1967b) Chytrids and algae II. Factors influencing parasitism of Rhizophydium sphaerocarpum on Spirogyra. Can J Bot 45:431–440

    Google Scholar 

  • Barron GL, Szijarto E (1986) A new species of Olpidium parasitc in nematode eggs. Mycologia 78:972–975

    Google Scholar 

  • Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phylogeny. In: Harbone JB (ed) Phytochemical phylogeny. Academic, London, pp 81–103

    Google Scholar 

  • Bartnicki-Garcia S (1987) The cell wall in fungal evolution. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, New York, pp 389–403

    Google Scholar 

  • Beakes GW, Canter HM, Jaworski GHM (1993) Sporangium differentiation and zoospore fine-structure of the chytrid Rhizophydium planktonicum, a fungal parasite of Asterionella formosa. Mycol Res 97:1059–1074

    Google Scholar 

  • Besl H, Bresinsky A (1997) Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillineae). Plant Syst Evol 206:223–242

    Google Scholar 

  • Blackwell WH, Letcher PM, Powell MJ (2011) The occurrence of Blyttiomyces spinosus in Alabama and Argentina, and comments on the genus Blyttiomyces (Chytridiomycota). Phytologia 93:304–315

    Google Scholar 

  • Bridge PD (1985) An evaluation of some physiological and biochemical methods as an aid to the characterization of species of Penicillium subsection Fasciculata. J Gen Microbiol 131:1887–1895

    Google Scholar 

  • Briggs CJ, Knapp R, Vrendenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci USA 107:9695–9700

    PubMed  CAS  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    PubMed  CAS  Google Scholar 

  • Bruckart WL, Eskandari FM, Widmer TL (2011) Synchytrium solstitiale: reclassification based on the function and role of resting spores. Mycologia 103:775–778

    PubMed  Google Scholar 

  • Bruning K (1991a) Effects of phosphorus limitation on the epidemiology of a chytrid phytoplankton parasite. Freshwater Biol 25:409–417

    Google Scholar 

  • Bruning K (1991b) Effects of temperature and light on the population-dynamics of the Asterionella-Rhizophydium association. J Plankton Res 13:707–719

    Google Scholar 

  • Bruning K (1991c) Infection of the diatom Asterionella by a chytrid. 1. Effects of light on reproduction and infectivity of the parasite. J Plankton Res 13:103–117

    Google Scholar 

  • Bruning K (1991d) Infection of a diatom Asterionella by a chytrid. II. Effects of light on survival and epidemic development of the parasite. J Plankton Res 13:119–129

    Google Scholar 

  • Bruning K, Lingeman R, Ringelberg J (1992) Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr 37:252–260

    Google Scholar 

  • Buck J, Truong L, Blaustein A (2011) Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus? Biodivers Conserv 20:3549–3553

    Google Scholar 

  • Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Appl Environ Microbiol 75:6415–6421

    PubMed  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    PubMed  CAS  Google Scholar 

  • Canter HM (1969) Studies on British chytrids. XXIX. A taxonomic revision of certain fungi found on the diatom Asterionella. Bot J Linn Soc 62:267–278

    Google Scholar 

  • Canter HM (1972) A guide to the fungi occurring on planktonic blue-green algae. In: Desikachary TV (ed) Taxonomy and biology of blue-green algae. University of Madras, Madras, pp 145–158

    Google Scholar 

  • Canter HM, Jaworski GHM (1979) The occurrence of a hypersensitive reaction in the planktonic diatom Asterionella formosa Hassall parasitized by the chytrid Rhizophydium planktonicum Canter emend. in culture. New Phytol 82:187–206

    Google Scholar 

  • Canter HM, Lund JWG (1951) Studies on plankton parasites. III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann Bot 15:359–372

    Google Scholar 

  • Canter HM, Lund JWG (1953) Studies on plankton parasites. II. The parasitism of diatoms with special reference to lakes in the English Lake District. Trans Br Mycol Soc 36:13–37

    Google Scholar 

  • Canter HM, Walsby AE, Kinsman R, Ibelings BW (1992) The effect of attached Vorticellids on the buoyancy of the colonial cyanobacterium Anabaena lemmermannii. Brit Phycol J 27:65–74

    Google Scholar 

  • Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47. doi:10.1186/1741-7007-10-47

    PubMed  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom of life. Biol Rev 73:203–266

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2009) Megaphylogeny, cell body plans, adaptive zones: causes and timing of Eukaryote basal radiations. J Eukaryot Microbiol 56:26–33

    PubMed  Google Scholar 

  • Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748

    PubMed  CAS  Google Scholar 

  • De Bruin A (2006) The potential for coevolution in a host-parasite system. Dissertation, Radboud University Nijmegen, Netherlands Institute of Ecology of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands

    Google Scholar 

  • Deacon JW, Saxena G (1997) Oriented zoospore attachment and cyst germination in Catenaria anguillulae, a facultative endoparasite of nematodes. Mycol Res 101:513–522

    Google Scholar 

  • Doggett MS, Porter D (1996) Sexual reproduction in the fungal parasite, Zygorhizidium planktonicum. Mycologia 88:720–732

    Google Scholar 

  • Doweld A (2001) Prosyllabus tracheophytorum – tentamen systematis plantarum vascularium (Tracheophyta). Goes MMI, Moscow, pp 1–111

    Google Scholar 

  • Ebersberger I, Gube M, Strauss S, Kupczok A, Eckart M, Voigt K, Kothe E, von Haeseler A (2009a) A stable backbone for the fungi. Nature precedings: hdl:10101/npre.2009.2901.1. Accessed 19 Sept 2012

    Google Scholar 

  • Ebersberger I, Strauss S, von Haeseler A (2009b) HaMStR: profile hidden Markov model based. BMC Evol Biol. doi:10.1186/1471-2148-9-157

    PubMed  Google Scholar 

  • Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothe E, Voigt K, von Haeseler A (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29:1319–1334

    PubMed  CAS  Google Scholar 

  • Edwards JE, Huws SA, Kim EJ, Kingston-Smith AH, Jimenes HR, Skot KP, Griffith GW, McEwan NR, Theodorou MK (2008) Dynamics of initial colonozation of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol 66:537–545

    PubMed  CAS  Google Scholar 

  • Federici BA, Lucarotti CJ (1986) Structure and behavior of the meiospore of Coelomomyces dodgei during encystment on the copepod host Acanthocyclops vernalis. J Invert Pathol 48:259–268

    CAS  Google Scholar 

  • Fernández C, Parodi ER, Cáceres EJ (2012) Impact of the fungal parasite Rhizophydium couchii (Chytridiomycota) on the population dynamics of the freshwater alga Closterium aciculare (Chlorophyta). Nova Hedwigia 93:97–106

    Google Scholar 

  • Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    PubMed  CAS  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownsteiin JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    PubMed  CAS  Google Scholar 

  • Frisvad JC, Filtenborg O (1990) Secondary metabolites as consistent criteria in Penicillium taxonomy and a synoptic key to Penicillium subgenus Penicillium. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum, New York, pp 373–384

    Google Scholar 

  • Gherbawy Y, Voigt K (2010) Molecular identification of fungi. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Gleason FH, Lilje O (2009) Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59

    Google Scholar 

  • Gleason FH, Marano AV (2011) The effects of antifungal substances on zoosporic fungi. Hydrobiologia 659:81–92

    CAS  Google Scholar 

  • Gleason FH, Kagami M, Lefèvre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 2:17–25

    Google Scholar 

  • Gleason FH, Marano AV, Johnson P, Martin WW (2010a) Blastocladian parasites of invertebrates. Fungal Biol Rev 24:56–67

    Google Scholar 

  • Gleason FH, Schmidt SK, Marano AV (2010b) Can zoosporic true fungi grow or survive in extreme or stressful environments? Extremophiles 14:417–425

    PubMed  Google Scholar 

  • Gleason FH, Amon JP, Küpper FC, Gachon CMM, Marano AV, Sime-Ngando T, Lilje O (2011) Zoosporic true fungi in marine ecosystems. Mar Freshwater Res 62:383–393

    CAS  Google Scholar 

  • Gleason FH, Crawford JW, Neuhauser S, Henderson L, Lilje O (2012a) Resource seeking strategies of zoosporic true fungi in soils. Soil Biol Biochem 45:79–88

    PubMed  CAS  Google Scholar 

  • Gleason FH, Carney LT, Lilje O, Glockling SL (2012b) Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecol 5:651–656

    Google Scholar 

  • Glockling SL (1998) Isolation of a new species of rotifer-attacking Olpidium. Mycol Res 102:206–208

    Google Scholar 

  • Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Inaba S, Mizutani T, Hyatt AD (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18:4757–4774

    PubMed  CAS  Google Scholar 

  • Grami B, Rasconi S, Niquil N, Jobard M, Saint-Béat B (2011) Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: a linear inverse modeling analysis. PLoS One 6:e23273. doi:10.1371/journal.pone.0023273

    PubMed  CAS  Google Scholar 

  • Greco N, Bussers JC, Van Daele Y, Goffinet G (1990) Ultrastructural localization of chitin in the cystic wall of Euplotes muscicola Kahl (Ciliata, Hypotrichia). Europ J Protistol 26:75–80

    CAS  Google Scholar 

  • Gsell AS, De Senerpont Domis LN, Naus-Wiezer SMH, Helmsing NR, van Donk E, Ibelings BW (2012) Spatiotemporal variation in the distribution of chytrid parasites in diatom host populations. Freshw Biol. doi:10.1111/j.1365-2427.2012.02786.x

    Google Scholar 

  • Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus fluvialis. European J Phycol 44:509–514

    CAS  Google Scholar 

  • Hampson MC (1980) Pathogenesis of Synchytrium endobioticum: 2. Effect of soil amendments and fertilization. Can J Plant Pathol 2:148–151

    Google Scholar 

  • Hampson MC, Coombes JW, Debnath SC (1997) Dual culture of Solanum tuberosum and Synchytrium endobioticum (Pathotype 2). Mycologia 89:772–776

    Google Scholar 

  • Hartwright LM, Hunter PJ, Walsh JA (2010) A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol 114:26–33

    PubMed  CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathol 87:888–891

    CAS  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth & Bisby’s dictionary of the fungi, 8th edn. International Mycological Institute, Kew/Surrey

    Google Scholar 

  • Heger TJ, Mitchell EAD, Todorov M, Golemansky V, Lara E, Leander BS, Pawlowski J (2010) Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Mol Phyl Evol 55:113–122

    CAS  Google Scholar 

  • Herrera-Vásquez JA, Cebrián MdC, Alfaro-Fernández A, Córdoba-Sellés MC, Jordá C (2010a) Multiplex PCR assay for simultaneous detection and differentiation of Olpidium bornovanus, O. brassicae and O. virulentus. Mycol Res 113:602–610

    Google Scholar 

  • Herrera-Vásquez JA, Córdoba-Sellés MC, Cebrián MdC, Rosselló JA, Alfaro-Fernández A, Jordá C (2010b) Genetic diversity of melon necrotic spot virus and Olpidium isolates from different origins. Plant Pathol 59:240–251

    Google Scholar 

  • Herth W, Zugenmaier P (1977) Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica. J Ultrastructure Res 61:230–239

    CAS  Google Scholar 

  • Herth W, Kuppel A, Schnepf E (1977) Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). J Cell Biol 73:311–321

    PubMed  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson O, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch T, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai Y-C, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde K, Köljalb U, Kurtzman CP, Larsson K-H, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo J-M, Mozley-Standridge S, Oberwinkler F, Parmasto R, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schuessler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang A, Weir A, Weiss M, White M, Winka K, Yao Y-J, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Kirk PM (2009) Fungal ecology catches fire. New Phytol 184:279–282

    PubMed  Google Scholar 

  • Holfeld H (2000a) Relative abundance, rate of increase, and fungal infections of freshwater phytoplankton. J Plankton Res 22:987–995

    Google Scholar 

  • Holfeld H (2000b) Infection of the single-celled diatom Stephanodiscus alpinus by the chytrid Zygorhizidium: parasite distribution within host population, changes in host cell size, and host-parasite size relationship. Limnol Oceang 45:1440–1444

    Google Scholar 

  • Ibelings BW, de Bruin A, van Donk E (2003) Parasitic fungi of freshwater phytoplankton. In: Tsui CKM, Hyde KD (eds) Freshwater mycology, vol 10, Fungal diversity research series. Fungal Diversity Press, Hong Kong, pp 11–50

    Google Scholar 

  • Ibelings BW, de Bruin A, Kagami M, Rijkeboer M, Brehm M, van Donk E (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol 40:437–453

    Google Scholar 

  • Ibelings BW, Gsell AS, Mooij WM, van Donk E, van Wyngaert S, de Senerpont Domis LN (2011) Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemic in Lakes. Freshwater Biol 56:754–766

    Google Scholar 

  • James TY, Berbee ML (2011) No jacket required – new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. Bioessays 34:94–102

    PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006a) Reconstructing the early evolution of the fungi using a six-gene phylogeny. Nature 443:818–822

    PubMed  CAS  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Strandridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871

    PubMed  Google Scholar 

  • Johns RM (1966) Morphological and ecological study of Physoderma dulichii. Amer J Bot 53:34–45

    Google Scholar 

  • Johnson ML, Speare R (2003) Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis 9:922–925

    PubMed  Google Scholar 

  • Johnson PTJ, Longcore JE, Stanton DE, Carnegie RB, Shields JD, Preu ER (2006) Chytrid infections of Daphnia pulicaria: development, ecology, pathology and phylogeny of Polycaryum laeve. Freshwater Biol 51:634–648

    Google Scholar 

  • Johnson PTJ, Ives AR, Lathrop RC, Carpenter SR (2009) Longterm disease dynamics in lakes: causes and consequences of chytrid infections in Daphnia populations. Ecology 90:132–144

    PubMed  Google Scholar 

  • Joines JD (1984) Observations on the fungus Sorochytrium milnesiophthora sp. nov., an endoparasite of the tardigrade Milnesium tardigradum Doyere: M.Sc. thesis, Appalachian State University

    Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Botanica Marina 54:343–354

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011a) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    PubMed  CAS  Google Scholar 

  • Jones MDM, Richards TA, Hawksworth DL, Bass D (2011b) Validation and justification of the phylum name Cryptomycota phyl. nov. IMA Fungus 2:173–175

    PubMed  Google Scholar 

  • Kagami M (2012) Mycoloop. http://www.lab.toho-u.ac.jp/sci/env/kagami/english/research/index.html. Accessed 19 Sept 2012

  • Kagami M, Urabe J (2002) Mortality of the planktonic desmid, Staurastrum dorsidentiferum, due to interplay of fungal parasitism and low light conditions. Verh Int Verein Limnol 28:1001–1005

    Google Scholar 

  • Kagami M, van Donk E, de Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–5685

    Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, van Donk E (2007a) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Google Scholar 

  • Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E (2007b) The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc Royal Soc B 274:1561–1566

    Google Scholar 

  • Kagami M, Amano Y, Ishii N (2012) Community structure of planktonic fungi and the Impact of parasitic chytrids on phytoplankton in Lake Inba, Japan. Microb Ecol 63:358–368

    PubMed  Google Scholar 

  • Karling JS (1977) Chytridiomycetarum Iconographia. J Cramer, Vaduz

    Google Scholar 

  • Kimbrough JW (1994) Septal ultrastructure and ascomycete systematics. In: Hawksworth DL (ed) Ascomycete systematics: problems and perspectives in the nineties. Plenum, New York, pp 127–141

    Google Scholar 

  • Kirk PM, Cannon PF, David DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CSIRO, Wallingford

    Google Scholar 

  • Kohn LM (1992) Developing new characters for fungal systematics: an experimental approach for determining the rank of resolution. Mycologia 84:139–153

    Google Scholar 

  • Kühn SF, Hofmann M (1999) Infection of Coscinodiscus granii by the parasitoid nanoflagellate Pirsonia diadema: III. Effects of turbulence on the incidence of infection. J Plankton Res 21:2323–2340

    Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Let 11:533–546

    Google Scholar 

  • Laidlaw WMR (1985) A method for detection of the resting sporangia of potato wart disease (Synchytrium endobioticum) in the soil of old outbreak sites. Potato Res 28:223–232

    Google Scholar 

  • Lange L, Olson LW (1980) Germination of the resting sporangia of Physoderma maydis, the causal agent of Physoderma disease of maize. Protoplasma 102:323–342

    Google Scholar 

  • Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    PubMed  CAS  Google Scholar 

  • Ledingham GA (1936) Rhizophydium graminis n. sp., a parasite of wheat roots. Can J Res 14:117–121

    Google Scholar 

  • Lenné JM (1985) Synchytrium desmodii, cause of wart disease of the tropical legume Desmodium ovalifolium in Colombia. Plant Dis 69:806–808

    Google Scholar 

  • Li J, Heath IB, Packer L (1993) The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. II. Cladistic analysis of structural data and description of Neocallimasticales ord. nov. Can J Bot 71:393–407

    Google Scholar 

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235

    PubMed  Google Scholar 

  • Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K (2009) Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol 17:414–422

    PubMed  CAS  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Google Scholar 

  • Marano AV, Pires-Zottarelli CLA, Gleason FH, Neuhauser S, Steciow MM (2011) Chapter 1: Assemblages of zoosporic true fungi, heterotrophic straminipiles and plasmodiophorids in freshwater ecosystems. In: Browne SA (ed) Aquatic ecosystems. Nova, New York, pp 1–56

    Google Scholar 

  • Marano AV, Gleason FH, Bärlocher F, Pires-Zottarelli CLA, Schmidt SK, Rasconi S, Lilje O, Kagami M, Telesphore S-N, Barrera MD, Boussiba S, de Souza JI, Edwards JE (2012) Quantitative methods for the analysis of zoosporic fungi. J Microbiol Meth 89:22–33

    CAS  Google Scholar 

  • Martin WW (1981) The natural regulation of midge populations by aquatic fungi in Virginia. J Elisha Mitchell Sci Soc 97:162–170

    Google Scholar 

  • Maxson LR, Maxson RD (1990) Proteins II. Immunological techniques. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 127–155

    Google Scholar 

  • McCreadie JW, Adler PH, Beard CE (2011) Ecology of symbiotes of larval black flies (Diptera: Simuliidae): distribution, diversity and scale. Environ Entomol 40:289–302

    Google Scholar 

  • McFarlane I (1970) Lagena radicicola and Rhizophydium graminis, two common and neglected fungi. Trans Br Mycol Soc 55:113–116

    Google Scholar 

  • Mulisch M (1993) Chitin in protistan organisms: distribution, synthesis and deposition. Eur J Protistol 29:1–18

    PubMed  CAS  Google Scholar 

  • Müller DG, Küpper FC, Küpper H (1999) Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol Res 47:217–223

    Google Scholar 

  • Nagy LG, Petkovits T, Kovács GM, Voigt K, Vágvölgyi C, Papp T (2011) Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol 19:789–794

    Google Scholar 

  • Nascimento de Almeida C, Gomes EP, Pires-Zottarelli CL (2011) Occurrence and distribution of zoosporic organisms in water bodies from Brazilian Cerrado. Mycologia 103:261–272

    Google Scholar 

  • Niepold F, Stachewicz H (2004) PCR-detection of Synchytrium endobioticum (Schilb.) Perc. J Plant Dis Protect 111:313–321

    CAS  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    PubMed  Google Scholar 

  • Olive LS (1980) Caulochytrium protostelioides sp. nov., a new chytrid with aerial sporangia. Amer J Bot 67:568–574

    Google Scholar 

  • Paterson RRM, Bridge PD (1994) Biochemical techniques for filamentous fungi. CAB International, Wallingford

    Google Scholar 

  • Paulitz TC, Menge JA (1984) Is Spizellomyces punctatum a parasite or saprophyte of vesicular-arbuscular mycorrhizal fungi? Mycologia 76:99–107

    Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, London

    Google Scholar 

  • Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo JM (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phyl Evol 46:635–644

    CAS  Google Scholar 

  • Powell MJ (1993) Looking at mycology with a Janus face: a glimpse at chytridiomycetes active in the environment. Mycologia 85:1–20

    Google Scholar 

  • Powell MJ (1994) Production and modifications of extra cellular structures during development of Chytridiomycetes. Protoplasma 181:123–141

    Google Scholar 

  • Reynolds CS (1973) The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshwater Biol 3:89–110

    Google Scholar 

  • Robinson RA (1976) Plant pathosystems. Springer, Berlin

    Google Scholar 

  • Rochon D, Kakani K, Robbins M, Reade R (2001) Molecular aspects of plant virus transmission by Olpidium and plasmodiophorid viruses. Annu Rev Phytopathol 42:211–241

    Google Scholar 

  • Schaffner JH (1909) The classification of plants, IV. Ohio Naturalist 9:446–455

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    PubMed  CAS  Google Scholar 

  • Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML (2011) A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 11:331. doi:10.1186/1471-2148-11-331

    PubMed  CAS  Google Scholar 

  • Sen B (1987a) Fungal parasitism of planktonic algae in Shearwater. I. Occurrence of Zygorhizidium affluens Canter on Asterionella formosa Hass in relation to the seasonal periodicity of the alga. Arch Hydrobiol 76:101–127

    Google Scholar 

  • Sen B (1987b) Fungal parasitism of planktonic algae in Shearwater. II. A study of the chytrid parasites of the diatom Fragilaria crotonensis Kitton. Arch Hydrobiol 76:129–144

    Google Scholar 

  • Sen B (1987c) Fungal parasitism of planktonic algae in Shearwater. III. Fungal parasites of centric diatoms. Arch Hydrobiol 79:167–175

    Google Scholar 

  • Sen B (1988a) Fungal parasitism of planktonic algae in Shearwater. IV. Parasitic occurrence of a new chytrid species on the bluegreen alga Microcystis aeruginosa Kuetz emend. Elenkin. Archiv Hydrobiol 79:177–184

    Google Scholar 

  • Sen B (1988b) Fungal parasitism of planktonic algae in Shearwater. V. Fungal parasites of the green algae. Arch Hydrobiol 79:185–205

    Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of Choanozoa and the origin of animals. PLoS One 3:e2098. doi:10.1371/journal.pone.0002098

    PubMed  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Google Scholar 

  • Shin W, Boo SM, Longcore J (2001) Entophlyctis apiculata, a chytrid parasite of Chlamydomonas sp. (Chlorophyceae). Can J Bot 79:1083–1089

    Google Scholar 

  • Sime-Ngando T, Lefévre E, Gleason FH (2011) Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. Hydrobiologia 659:5–22

    CAS  Google Scholar 

  • Singh KP, Jaiswal RK, Kumar N (2007) Catenaria anguillulae Sorokin: a natural biocontrol agent of Meloidogyne graminicola causing root knot disease of rice (Oryza sativa L.). World J Microb Biot 23:291–294

    Google Scholar 

  • Sommer U (1987) Factors controlling the seasonal variation in phytoplankton species composition – a case study for a deep, nutrient rich lake. Prog Phycol Res 5:124–178

    Google Scholar 

  • Sønstebø JH, Rohrlack T (2011) Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 77:1344–1351

    PubMed  Google Scholar 

  • Sparrow FK Jr (1960) Aquatic phycomycetes, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Sparrow FK Jr (1968) Ecology of freshwater fungi. In: Ainsworth GC, Sussman AS (eds) The fungi: an advanced treatise. Academic, New York, pp 41–93

    Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    PubMed  CAS  Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2005) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    PubMed  Google Scholar 

  • Stock A, Jürgens K, Bunge J, Stoeck T (2009) Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat Microb Ecol 55:267–284

    Google Scholar 

  • Tuckwell DS, Nicholson MJ, McSweeney CS, Theodorou MK, Brookman JL (2005) The rapid assignement of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology 151:1557–1567

    PubMed  CAS  Google Scholar 

  • van Donk E, Bruning K (1992) Ecology of aquatic fungi in and on algae. In: Reisser W (ed) Algae and symbioses. Biopress, Bristol, pp 567–592

    Google Scholar 

  • van Donk E, Ringelberg J (1983) The effect of fungal parasitism on the discussion of diatoms in Lake Maarsseveen I (The Netherlands). Freshwater Biol 13:241–251

    Google Scholar 

  • van Valen L (1973) A new evolutionary law. Evol Theor 1:1–30

    Google Scholar 

  • Vogel HJ (1961) Lysine synthesis and phylogeny of lower fungi: some chytrids versus Hyphochytrium. Nature 189:1026–1027

    PubMed  CAS  Google Scholar 

  • Voigt K (2012) Chytridiomycota. In: Engler A, Frey W (eds) Syllabus of plant families, Vol 1/1: blue-green algae, myxomycetes and myxomycete-like organisms, phytoparqasitic protists, heterotrophic heterokontobionta and fungi. Borntraeger, Stuttgart, pp 106–129

    Google Scholar 

  • Voigt K, Kirk PM (2011) Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol 90:41–57

    PubMed  CAS  Google Scholar 

  • Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585

    PubMed  CAS  Google Scholar 

  • Voyles J, Vredenburg VT, Tunstall TS, Parker JM, Briggs CJ, Rosenblum EB (2012) Pathophysiology in mountain yellow-legged frogs (Rana muscosa) during a chytridiomycosis outbreak. PLoS One 7:e35374. doi:10.1371/journal.pone.0035374

    PubMed  CAS  Google Scholar 

  • Ward HHD, Alroy J, Lev BI, Keusch GT, Pereira MEA (1985) Identification of chitin as a structural component of Giardia cysts. Infect Immun 49:629–634

    PubMed  CAS  Google Scholar 

  • Whisler HC (1985) Life history of species of coelomomyces. In: Couch JN, Bland CE (eds) The genus Coelomomyces. Academic, New York, pp 9–22

    Google Scholar 

  • Whisler HC, Sabwa Karanja DM, Shemanchuk JA, Zebold SL, Romney SV, Nielsen LT (2009) The life history and in vivo culture of Coelomomyces utahensis (Blastocladiomycetes). J Invert Pathol 100:40–43

    Google Scholar 

  • Widmer TL, Guermanche F (2006) Factors affecting infection of yellow starthistle (Centaurea solstitialis) by Synchytrium solstitale, causal agent of false rust disease. Plant Dis 90:425–428

    Google Scholar 

  • Youngman RE, Johnson D, Farley MR (1976) Factors influencing phytoplankton growth and succession in Farmoor Reservoir. Freshwater Biol 6:253–263

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to William L. Bruckart, Farivar M. Eskandari, and Timothy L. Widmer (USDA, ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland 21702, USA) for providing Fig. 9.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voigt, K., Marano, A.V., Gleason, F.H. (2013). 9 Ecological and Economical Importance of Parasitic Zoosporic True Fungi. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_9

Download citation

Publish with us

Policies and ethics