Skip to main content
Log in

Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The superoxide dismutase (SOD, EC 1.15.1.1) of Deinococcus radiophilus, a bacterium extraordinarily resistant to UV, ionizing radiations, and oxidative stress, was purified 1,920-fold with a 58% recovery yield from the cell-free extract of stationary cells by steps of ammonium sulfate fractionation and Superdex G-75 gel-filtration chromatography. A specific activity of the purified enzyme preparation was ca. 31,300 U mg−1 protein. D. radiophilus SOD is Mn/FeSOD, judging by metal analysis and its insensitivity to cyanide and a partial sensitivity to H2O2. The molecular weights of the purified enzyme estimated by gel chromatography and polyacrylamide gel electrophoresis are 51.5±1 and 47.1±5 kDa, respectively. The SOD seems to be a homodimeric protein with a molecular mass of 26±0.5 kDa per monomer. The purified native SOD showed very acidic pI of ca. 3.8. The enzyme was stable at pH 5.0–11.0, but quite unstable below pH 5.0. SOD was thermostable up to 40°C, but a linear reduction in activity above 50°C. Inhibition of the purified SOD activity by β-naphthoquinone-4-sulfonic acid, ρ-diazobenzene sulfonic acid, and iodine suggests that lysine, histidine, and tyrosine residues are important for the enzyme activity. The N-terminal peptide sequence of D. radiophilus Mn/FeSOD (MAFELPQLPYAYDALEPHIDA(>D) is strikingly similar to those of D. radiodurans MnSOD and Aerobacter aerogenes FeSOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–C
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostini HJ, Carroll JD, Minton KW (1996) Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 178:759–765

    Google Scholar 

  • An SS, Kim YM (1997) Purification and characterization of a manganese-containing superoxide dismutase from a carboxydobacterium Pseudomonas carboxydohydrogen. Mol Cells 7:730–737

    CAS  PubMed  Google Scholar 

  • Battista JR, Earl AM, Park MJ (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7:362–365

    CAS  PubMed  Google Scholar 

  • Bauche C, Laval J (1999) Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 181:262–269

    CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Bollag DM, Edelstein SJ (1996) Protein methods, 3rd edn. Wiley, New York

  • Borgstahl GE, Parge HE, Hickey MJ, Beyer WFJ, Hallewell RA, Tainer JA (1992) The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 71:107–118

    CAS  PubMed  Google Scholar 

  • Carroll JD, Daly MJ, Minton KW (1996) Expression of recA in Deinococcus radiodurans. J Bacteriol 178:130–135

    CAS  PubMed  Google Scholar 

  • Chou FI, Tan ST (1990) Manganese (II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J Bacteriol 172:2029–2035

    CAS  PubMed  Google Scholar 

  • Evans DM, Moseley BE (1983) Roles of the uvsC, uvsD, uvsE, and mtcA genes in the two pyrimidine dimer excision repair pathways of Deinococcus radiodurans. J Bacteriol 156:576–583

    CAS  PubMed  Google Scholar 

  • Gersten DM (1996) Gel electrophoresis: proteins. In: Rickwood D (ed) Essential techniques series. Wiley, New York

  • Gutman PD, Carroll JD, Masters CI, Minton KW (1994) Sequencing, targeted mutagenesis and expression of recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene 141:31–37

    CAS  PubMed  Google Scholar 

  • Hakamada Y, Koike K, Kobayashi T, Ito S (1997) Purification and properties of mangano-superoxide dismutase from a strain of alkalophilic Bacillus. Extremophiles 1:74–78

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, pp 105–245

  • Inaoka T, Matsumura Y, Tsuchido T (1998) Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J Bacteriol 180:3697–3703

    CAS  PubMed  Google Scholar 

  • Jung SY, Lee SL, Lee TH (1993) Purification and characterization of superoxide dismutase from Rhodotorula glutinis K-24. Kor J Microbiol 31:573–578

    CAS  Google Scholar 

  • Kim J, Sharma AK, Abbott SN, Wood EA, Dwyer DW, Jambura A, Minton KW, Inman RB, Daly MJ, Cox MM (2002) RecA protein from the extremely radioresistant bacterium Deinococcus radiorurans: expression, purification and characterization. J Bacteriol 184:1649–1660

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AC, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation resistant bacteria, Deinococcus radiodurans, viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79

    CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Assay of SOD by pyrogallol autooxidation. Eur J Biochem 47:469–474

    CAS  PubMed  Google Scholar 

  • Meier B, Parak F, Desideri A, Rotilio G (1997) Comparative stability studies on the iron and manganese forms of the cambialistic superoxide dismutase from Propionibacterium shermanii. FEBS Lett 414:122–124

    Article  CAS  PubMed  Google Scholar 

  • Minton KW (1996) Repair of ionizing radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutant Res 363:1–7

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1978) Inhibition of superoxide dismutases by azide. Arch Biochem Biophys 189:317–322

    CAS  PubMed  Google Scholar 

  • Müller DJ, Engel WA (1996) Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J Bacteriol 178:3025–3030

    PubMed  Google Scholar 

  • Murray RGE (1986) Family II, Deinococcaceae. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1035–1043

  • Osatomi K, Masuda Y, Hara K, Ishihara T (2001) Purification, N-terminal amino acid sequence, and some properties of Cu, Zn-superoxide dismutase from Japanese flounder (Paralichthys olivaceus) hepato-pancreas. Comp Biochem Phys 128:751–760

    Article  CAS  Google Scholar 

  • Öztürk-Ürek R, Tarhan L (2001) Purification and characterization of superoxide dismutase from chicken liver. Comp Biochem Phys 128:205–212

    Google Scholar 

  • Öztürk-Ürek R, Bozkaya LA, Atav E, Saglam N, Tarhan L (1999) Purification and characterization of superoxide dismutase from Phanerchaete chrysosporium. Enzyme Microbiol Tech 25:392–399

    Article  Google Scholar 

  • Pagani S, Colnaghi R, Palagi A, Negri A (1995) Purification and characterization of an iron superoxide dismutase from the nitrogen-fixing Azotobacter vinelandii. FEBS Lett 357:79–82

    Article  CAS  PubMed  Google Scholar 

  • Price NC, Stevens L (1988) Fundamentals of enzymology, 2nd edn. Oxford Science, Oxford

  • Righetti P, Drysdale JW (1971) Isoelectric focusing in polyacrylamide gels. Biochem Biophys Acta 236:17–28

    Article  CAS  PubMed  Google Scholar 

  • Soung NK, Lee YN (2000) Iso-catalase profiles of Deinococcus spp. J Biochem Mol Biol 33:412–416

    CAS  Google Scholar 

  • Uchica K, Kawakishi S (1994) Identification of oxidized histidine generated at the active site of CuZnSOD exposed to H2O2. J Biol Chem 269:2405–2410

    CAS  PubMed  Google Scholar 

  • Valderas MW, Hart ME (2001) Identification and characterization of a second superoxide dismutase gene (sodM) from Staphylococcus aureus. J Bacterial 183:3399–3407

    Article  CAS  Google Scholar 

  • Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996). A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J. 318:889–896

    Google Scholar 

  • Yun EJ, Lee YN (2000) Production of two different catalase-peroxidases by Deinococcus radiophilus. FEMS Microbiol Lett 184:155–159

    Article  CAS  PubMed  Google Scholar 

  • Yun YS, Lee YN (2001) Superoxide dismutase profiles in the mesophilic Deinococcus species. J Microbiol 39:232–235

    CAS  Google Scholar 

  • Yun YS, Lee YN (2003) Production superoxide dismutase by Deinococcus radiophilus. J Biochem Mol Biol 36:282–287

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (ROS-2001-000-00320-0) from the Basic Research Program of the Korea Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Nam Lee.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, Y.S., Lee, Y.N. Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium. Extremophiles 8, 237–242 (2004). https://doi.org/10.1007/s00792-004-0383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0383-6

Keywords

Navigation