Skip to main content
Log in

Anelastic reorganisation of fibre-reinforced biological tissues

  • Special Issue CS Symposium 2016
  • Published:
Computing and Visualization in Science

Abstract

In this work, we contribute to the study of the structural reorganisation of biological tissues in response to mechanical stimuli. We specialise our investigation to a class of hydrated soft tissues, whose internal structure features reinforcing fibres. These are oriented statistically within the tissue, and their pattern of orientation is such that, at each material point, the tissue is anisotropic. From its natural, stress-free state, the tissue can be distorted anelastically into a global reference configuration, and then deformed under the action of external mechanical loads. The anelastic distortions are responsible for changing irreversibly the internal structure of the tissue, which, in the present context, occurs through both the rearrangement of the bonds among the tissue cells and the deformation-driven reorientation of the fibres. The anelastic strains, in addition, are assumed to model the onset and evolution of microcracks in the tissue, which may be triggered by the mechanical loads applied to the tissue in the case of traumatic events, or diseases. For our purposes, we formulate an anisotropic model of remodelling and we consider a fully isotropic model of structural reorganisation for comparison, with the aim to study if, how, and to what extent the evolution of anelastic distortions is influenced by the tissue’s anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12, 319–342 (2007)

    Article  MathSciNet  Google Scholar 

  2. Ambrosi, D., Guillou, A., Martino, E.S.D.: Stress-modulated remodelling of a non-homogeneous body. Biomech. Model. Mechanobiol. 1, 63–76 (2007)

    Google Scholar 

  3. Ateshian, G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6(6), 423–445 (2007)

    Article  Google Scholar 

  4. Bachrach, N.M., Mow, V.C., Guilak, F.: Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J. Biomech. 31, 445–451 (1998)

    Article  Google Scholar 

  5. Carfagna, M., Grillo, A.: The spherical design algorithm in the numerical simulation of biological tissues with statistical fibre-reinforcement. Comput. Vis. Sci. 18, 1–28 (2017). https://doi.org/10.1007/s00791-017-0278-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarletta, P., Ambrosi, D., Maugin, G.A., Preziosi, L.: Mechano-transduction in tumour growth modelling. Eur. Phys. J. E 36, 23–31 (2013)

    Article  Google Scholar 

  7. Cleja-Tigoiu, S., Maugin, G.A.: Eshelby’s stress tensors in finite elastoplasticity. Acta Mech. 139, 231–249 (2000)

    Article  Google Scholar 

  8. Crevacore, E., Di Stefano, S., Grillo, A.: Coupling among deformation, fluid flow, structural reorganisation and fibre reorientation in fibre-reinforced, transversely isotropic biological tissues. Int. J. Nonlinear Mech. 111, 1–13 (2019). https://doi.org/10.1016/j.ijnonlinmec.2018.08.022

    Article  Google Scholar 

  9. Curnier, A., He, Q.C., Zysset, P.: Conewise linear elastic materials. J. Elast. 37, 1–38 (1995)

    Article  MathSciNet  Google Scholar 

  10. Di Stefano, S., Ramírez-Torres, A., Penta, R., Grillo, A.: Self-influenced growth through evolving material inhomogeneities. Int. J. Nonlinear Mech. 106, 174–187 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.08.003

    Article  Google Scholar 

  11. DiCarlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)

    Article  MathSciNet  Google Scholar 

  12. Epstein, M.: The split between remodelling and aging. Int. J. Nonlinear Mech. 44(6), 604–609 (2009). https://doi.org/10.1016/j.ijnonlinmec.2009.02.005

    Article  Google Scholar 

  13. Epstein, M.: Mathematical characterization and identification of remodeling, growth, aging and morphogenesis. J. Mech. Phys. Solids 84, 72–84 (2015). https://doi.org/10.1016/j.jmps.2015.07.009

    Article  MathSciNet  Google Scholar 

  14. Epstein, M., Elżanowski, M.: Material Inhomogeneities and their Evolution—A Geometric Approach. Springer, Berlin (2004)

    MATH  Google Scholar 

  15. Epstein, M., Maugin, G.A.: On the geometrical material structure of anelasticity. Acta Mech. 115(1–4), 119–131 (1996). https://doi.org/10.1007/bf01187433

    Article  MathSciNet  MATH  Google Scholar 

  16. Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16(7–8), 951–978 (2000). https://doi.org/10.1016/s0749-6419(99)00081-9

    Article  MATH  Google Scholar 

  17. Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Nonlinear Mech. 47, 273–284 (2012)

    Article  Google Scholar 

  18. Federico, S., Gasser, T.C.: Non-linear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface 7, 955–966 (2010)

    Article  Google Scholar 

  19. Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012)

    Article  Google Scholar 

  20. Federico, S., Grillo, A.: Linear Elastic Composites with Statistically Oriented Spheroidal Inclusions, pp. 307–346. Springer, Berlin (2018)

    Google Scholar 

  21. Federico, S., Grillo, A., La Rosa, G., Giaquinta, G., Herzog, W.: A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J. Biomech. 38, 2008–2018 (2005)

    Article  Google Scholar 

  22. Federico, S., Herzog, W.: On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech. Model. Mechanobiol. 7, 367–378 (2008)

    Article  Google Scholar 

  23. Federico, S., Herzog, W.: On the permeability of fibre-reinforced porous materials. Int. J. Solids Struct. 45, 2160–2172 (2008)

    Article  Google Scholar 

  24. Federico, S., Herzog, W.: Towards an analytical model of soft tissues. J. Biomech. 41, 3309–3313 (2008)

    Article  Google Scholar 

  25. Fung, Y.C.: Biomechanics. Motion, Flow, Stress, and Growth. Springer, New York (1990)

    MATH  Google Scholar 

  26. Ganghoffer, J.: On eshelby tensors in the context of the thermodynamics of open systems: application to volumetric growth. Int. J. Eng. Sci. 48(12), 2081–2098 (2010)

    Article  MathSciNet  Google Scholar 

  27. Garcia, D., Zysset, P.K., Charlebois, M., Curnier, A.: A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech. Model. Mechanobiol. 8, 149–165 (2009)

    Article  Google Scholar 

  28. Garikipati, K., Arruda, E.M., Grosh, K., Narayanan, H., Calve, S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)

    Article  MathSciNet  Google Scholar 

  29. Garikipati, K., Olbering, J.E., Narayanan, H., Arruda, E.M., Grosh, K., Calve, S.: Biological remodelling: stationary energy, configurational change, internal variables and dissipation. J. Mech. Phys. Solids 54, 1493–1515 (2006)

    Article  MathSciNet  Google Scholar 

  30. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  31. Giverso, C., Preziosi, L.: Modelling the compression and reorganization of cell aggregates. Math. Med. Biol. 29, 181–204 (2012)

    Article  MathSciNet  Google Scholar 

  32. Goriely, A.: The Mathematics and Mechanics of Biological Growth. Springer, Heidelberg (2017)

    Book  Google Scholar 

  33. Grillo, A., Carfagna, M., Federico, S.: The Darcy–Forchheimer law for modelling fluid flow in biological tissues. Theor. Appl. Mech. TEOPM7 41(4), 283–322 (2014)

    Article  Google Scholar 

  34. Grillo, A., Carfagna, M., Federico, S.: Non-Darcian flow in fibre-reinforced biological tissues. Meccanica 52, 3299–3320 (2017)

    Article  MathSciNet  Google Scholar 

  35. Grillo, A., Carfagna, M., Federico, S.: An Allen–Cahn approach to the remodelling of fibre-reinforced anisotropic materials. J. Eng. Math. 109(1), 139–172 (2018). https://doi.org/10.1007/s10665-017-9940-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Nonlinear Mech. 47, 388–401 (2012)

    Article  Google Scholar 

  37. Grillo, A., Giverso, C., Favino, M., Krause, R., Lampe, M., Wittum, G.: Mass transport in porous media with variable mass. In: Delgado, J.M.P.Q., et al. (eds.) Numerical Analysis of Heat and Mass Transfer in Porous Media, pp. 27–61. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-30532-0-2

    Chapter  Google Scholar 

  38. Grillo, A., Guaily, A., Giverso, C., Federico, S.: Non-linear model for compression tests on articular cartilage. J. Biomech. Eng. 137, 071004-1–071004-8 (2015)

    Article  Google Scholar 

  39. Grillo, A., Prohl, R., Wittum, G.: A poroplastic model of structural reorganisation in porous media of biomechanical interest. Contin. Mech. Thermodyn. 28, 579–601 (2016)

    Article  MathSciNet  Google Scholar 

  40. Grillo, A., Prohl, R., Wittum, G.: A generalised algorithm for anelastic processes in elastoplasticity and biomechanics. Math. Mech. Solids 22(3), 502–527 (2017). https://doi.org/10.1177/1081286515598661

    Article  MathSciNet  MATH  Google Scholar 

  41. Holmes, M.H., Mow, V.C.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23, 1145–1156 (1990)

    Article  Google Scholar 

  42. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  43. Loret, B., Simões, F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. A/Solids 24, 757–781 (2005)

    Article  MathSciNet  Google Scholar 

  44. Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22, 1997–2010 (2017). https://doi.org/10.1177/1081286516653272

    Article  MathSciNet  MATH  Google Scholar 

  45. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)

    Article  Google Scholar 

  46. Lubliner, J.: Plasticity Theory. Dover Publications Inc, Mineola (2008)

    MATH  Google Scholar 

  47. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications Inc, New York (1983)

    MATH  Google Scholar 

  48. Mascheroni, P., Carfagna, M., Grillo, A., Boso, D., Schrefler, B.: An avascular tumor growth model based on porous media mechanics and evolving natural states. Math. Mech. Solids 23(4), 686–712 (2017). https://doi.org/10.1177/1081286517711217

    Article  MathSciNet  MATH  Google Scholar 

  49. Mascheroni, P., Stigliano, C., Carfagna, M., Boso, D.P., Preziosi, L., Decuzzi, P., Schrefler, B.A.: Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model. Biomech. Model. Mechanobiol. 15(5), 1215–1228 (2016). https://doi.org/10.1007/s10237-015-0755-0

    Article  Google Scholar 

  50. Maugin, G.A., Epstein, M.: Geometrical material structure of elastoplasticity. Int. J. Plast. 14(1–3), 109–115 (1998)

    Article  Google Scholar 

  51. Mićunović, M.V.: Thermomechanics of Viscoplasticity-Fundamentals and Applications. Springer, Heidelberg (2009)

    Book  Google Scholar 

  52. Mollenhauer, J., Aurich, M., Muehleman, C., Khelashvilli, G., Irving, T.C.: X-ray diffraction of the molecular substructure of human articular cartilage. Connect. Tissue Res. 44, 201–207 (2003)

    Article  Google Scholar 

  53. Olsson, T., Klarbring, A.: Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur. J. Mech. A/Solids 27, 959–974 (2008)

    Article  MathSciNet  Google Scholar 

  54. Preston, S., Elżanowski, M.: Material Uniformity and the Concept of the Stress Space, Chap. Continuous Media with Microstructure, pp. 91–101. Springer, Berlin (2010)

    Book  Google Scholar 

  55. Preziosi, L., Ambrosi, D., Verdier, C.: An elasto–visco–plastic model of cell aggregates. J. Theor. Biol. 262(1), 35–47 (2010)

    Article  MathSciNet  Google Scholar 

  56. Preziosi, L., Farina, A.: On darcy’s law for growing porous media. Int. J. Nonlinear Mech. 37(3), 485–491 (2002)

    Article  Google Scholar 

  57. Preziosi, L., Vitale, G.: A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Models Methods Appl. Sci. 21, 1901–1932 (2011)

    Article  MathSciNet  Google Scholar 

  58. Rodriguez, E.K., Hoger, A., McCullogh, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  59. Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22(4), 771–772 (2017). https://doi.org/10.1177/1081286515612280

    Article  MathSciNet  MATH  Google Scholar 

  60. Taber, L.: Biomechanics of growth, remodeling, and morphogenesis. ASME Appl. Mech. Rev. 48(8), 487–545 (1995)

    Article  Google Scholar 

  61. Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Grillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Rolf Krause.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially financed by the Politecnico di Torino [AG, SDS, MC, MMK, KH], the Fondazione Cassa di Risparmio di Torino in the context of the funding campaign “La Ricerca dei Talenti” (HR Excellence in Research) [AG, SDS, MC, MMK, KH], “Dipartimento di Eccellenza 2018-2022” (DISMA), Politecnico di Torino [AG, SDS]; the Natural Sciences and Engineering Research Council of Canada, through the NSERC Discovery Programme [SF], and the Biomedical Engineering Programme of the University of Calgary [KH].

Appendix: Fourth-order tensors

Appendix: Fourth-order tensors

The notation adopted in the following is taken from [17]. Let \([T{\mathscr {B}}]^{1}_{~1}\), \([T{\mathscr {B}}]_{1}^{~1}\), \([T{\mathscr {B}}]^{2}_{0}\), and \([T{\mathscr {B}}]^{0}_{2}\) denote the spaces of all second-order tensors which, as bilinear maps, read

$$\begin{aligned}&{\varvec{A}}:T^{\star }{\mathscr {B}}\times T{\mathscr {B}}\rightarrow {\mathbb {R}}, \end{aligned}$$
(55a)
$$\begin{aligned}&{\varvec{B}}:T{\mathscr {B}}\times T^{\star }{\mathscr {B}}\rightarrow {\mathbb {R}}, \end{aligned}$$
(55b)
$$\begin{aligned}&{\varvec{T}}:T^{\star }{\mathscr {B}}\times T^{\star }{\mathscr {B}}\rightarrow {\mathbb {R}}, \end{aligned}$$
(55c)
$$\begin{aligned}&{\varvec{Q}}:T{\mathscr {B}}\times T{\mathscr {B}}\rightarrow {\mathbb {R}}, \end{aligned}$$
(55d)

respectively. Let also \(([T{\mathscr {B}}]^{2}_{0},\mathrm {sym})\) and \(([T{\mathscr {B}}]_{2}^{0},\mathrm {sym})\) be, respectively, the subspaces of \([T{\mathscr {B}}]^{2}_{0}\) and \([T{\mathscr {B}}]^{0}_{2}\) of all symmetric, second-order tensors. The elements of \([T{\mathscr {B}}]^{1}_{~1}\) and \([T{\mathscr {B}}]_{1}^{~1}\) can be written as linear maps from \(T{\mathscr {B}}\) into itself, and from \(T^{\star }{\mathscr {B}}\) into itself, respectively, while the elements of \([T{\mathscr {B}}]^{2}_{0}\), and \([T{\mathscr {B}}]^{0}_{2}\) can be written as linear maps from \(T^{\star }{\mathscr {B}}\) into \(T{\mathscr {B}}\), and from \(T{\mathscr {B}}\) into \(T^{\star }{\mathscr {B}}\), respectively.

Let us also consider the spaces \([T{\mathscr {B}}]^{2}_{~2}\) and \([T{\mathscr {B}}]_{2}^{~2}\) of all fourth-order tensors of the type

$$\begin{aligned}&{\mathbb {T}}\in [T{\mathscr {B}}]^{2}_{~2},~{\mathbb {T}}:T^{\star }{\mathscr {B}}\times T^{\star }{\mathscr {B}}\times T{\mathscr {B}}\times T{\mathscr {B}}\rightarrow {\mathbb {R}}, \\&{\mathbb {Q}}\in [T{\mathscr {B}}]_{2}^{~2},~{\mathbb {Q}}:T{\mathscr {B}}\times T{\mathscr {B}}\times T^{\star }{\mathscr {B}}\times T^{\star }{\mathscr {B}}\rightarrow {\mathbb {R}}. \end{aligned}$$

An element of \([T{\mathscr {B}}]^{2}_{~2}\) can also be represented as a linear map from \([T{\mathscr {B}}]^{2}_{0}\) into \([T{\mathscr {B}}]^{2}_{0}\). Analogously, an element of \([T{\mathscr {B}}]_{2}^{~2}\) can be represented as a linear map from \([T{\mathscr {B}}]^{0}_{2}\) into \([T{\mathscr {B}}]^{0}_{2}\). For instance, the fourth-order tensor

$$\begin{aligned}&{\mathbb {I}}:[T{\mathscr {B}}]^{2}_{0}\rightarrow ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym}), \nonumber \\&{\mathbb {I}}=\tfrac{1}{2}\left( {\varvec{I}}\,{\underline{\otimes }}\,{\varvec{I}}+{\varvec{I}}\,{\overline{\otimes }}\,{\varvec{I}}\right) , \end{aligned}$$
(56)

where \({\varvec{I}}:T{\mathscr {B}}\rightarrow T{\mathscr {B}}\) is the identity tensor in \(T{\mathscr {B}}\), returns the symmetric part of the element of \([T{\mathscr {B}}]^{2}_{0}\) to which it is applied. Given two tensors \({\varvec{A}},{\varvec{D}}\in [T{\mathscr {B}}]^{1}_{~1}\), the representation of the tensor products \({\varvec{A}}{\underline{\otimes }}{\varvec{D}}\) and \({\varvec{A}}{\overline{\otimes }}{\varvec{D}}\) in index notation reads \([{\varvec{A}}{\underline{\otimes }}{\varvec{D}}]^{AB}_{~~\;MN}=A^{A}_{~M}D^{B}_{~N}\) and \([{\varvec{A}}{\overline{\otimes }}{\varvec{D}}]^{AB}_{~~\;MN}=A^{A}_{~N}D^{B}_{~M}\) [9]. Accordingly, in index notation, \({\mathbb {I}}\) is represented by the expression

$$\begin{aligned} {\mathbb {I}}^{AB}_{~~~MN}=\tfrac{1}{2}\left( \delta ^{A}_{~M}\delta ^{B}_{~N}+ \delta ^{A}_{~N}\delta ^{B}_{~M}\right) . \end{aligned}$$
(57)

Thus, for every \({\varvec{T}}\in [T{\mathscr {B}}]^{2}_{0}\), it holds that

$$\begin{aligned} {\mathbb {I}}:{\varvec{T}}=\tfrac{1}{2}\left( {\varvec{T}}+{\varvec{T}}^{ \mathrm {T}}\right) =\mathrm {sym}({\varvec{T}}), \end{aligned}$$
(58)

where the symbol “ : ” stands for “double contraction”. In index notation, it reads \(({\mathbb {I}}:{\varvec{T}})^{AB}={\mathbb {I}}^{AB}_{~~~MN}T^{MN}=[\mathrm {sym}({\varvec{T}})]^{AB}\). By definition, \({\mathbb {I}}\) is the identity fourth-order tensor over the space \(([T{\mathscr {B}}]^{2}_{0},\mathrm {sym})\). From here on, we consider only the restrictions of the fourth-order tensors of \([T{\mathscr {B}}]^{2}_{0}\) onto \(([T{\mathscr {B}}]^{2}_{0},\mathrm {sym})\).

For every \({\varvec{T}}\in ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym})\), the fourth-order tensor

$$\begin{aligned}&{\mathbb {K}}^{*}:([T{\mathscr {B}}]^{2}_{0},\mathrm {sym})\rightarrow ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym}), \nonumber \\&{\mathbb {K}}^{*}=\tfrac{1}{3}{\varvec{C}}^{-1}\otimes {\varvec{C}} \end{aligned}$$
(59)

extracts the spherical part of \({\varvec{T}}\) with respect to the metric \({\varvec{C}}\), i.e.,

$$\begin{aligned} {\mathbb {K}}^{*}:{\varvec{T}}=\tfrac{1}{3}\mathrm {tr}({\varvec{C}}{ \varvec{T}}){\varvec{C}}^{-1}. \end{aligned}$$
(60)

The deviatoric part of \({\varvec{T}}\) with respect to the metric \({\varvec{C}}\) is obtained by substracting \({\mathbb {K}}^{*}:{\varvec{T}}\) to \({\varvec{T}}\). This operation can be represented by the application of the fourth-order tensor

$$\begin{aligned}&{\mathbb {M}}^{*}:([T{\mathscr {B}}]^{2}_{0},\mathrm {sym})\rightarrow ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym}) \nonumber \\&{\mathbb {M}}^{*}={\mathbb {I}}-{\mathbb {K}}^{*}, \end{aligned}$$
(61)

to \({\varvec{T}}\) i.e.,

$$\begin{aligned} {\mathbb {M}}^{*}:{\varvec{T}}=({\mathbb {I}}-{\mathbb {K}}^{*}): {\varvec{T}}={\varvec{T}}-\tfrac{1}{3}\mathrm {tr}({\varvec{C}} {\varvec{T}}){\varvec{C}}^{-1}. \end{aligned}$$
(62)

Clearly, it holds that \(\mathrm {tr}\left[ {\varvec{C}}\left( {\mathbb {M}}^{*}:{\varvec{T}}\right) \right] =0\). We remark that, by their own definition, \({\mathbb {K}}^{*}\) and \({\mathbb {M}}^{*}\) constitute the partition of unity, i.e., \({\mathbb {I}}={\mathbb {K}}^{*}+{\mathbb {M}}^{*}\).

In analogous manner, we introduce the identity fourth-order tensor over the space \(([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\), i.e.,

$$\begin{aligned}&{\mathbb {I}}^{\mathrm {T}}:([T{\mathscr {B}}]^{0}_{2},\mathrm {sym}) \rightarrow ([T{\mathscr {B}}]^{0}_{2},\mathrm {sym}), \nonumber \\&{\mathbb {I}}^{\mathrm {T}}=\tfrac{1}{2}\left( {\varvec{I}}^{\mathrm {T}} \,{\underline{\otimes }}\,{\varvec{I}}^{\mathrm {T}}+{\varvec{I}}^{\mathrm {T}} \,{\overline{\otimes }}\,{\varvec{I}}^{\mathrm {T}}\right) , \end{aligned}$$
(63)

where \({\varvec{I}}^{\mathrm {T}}:T^{\star }{\mathscr {B}}\rightarrow T^{\star }{\mathscr {B}}\) is the identity tensor in \(T^{\star }{\mathscr {B}}\). For every \({\varvec{Q}}\in ([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\) it holds that

$$\begin{aligned} {\mathbb {I}}^{\mathrm {T}}:{\varvec{Q}}=\tfrac{1}{2}\left( {\varvec{Q}}+{\varvec{Q}}^{\mathrm {T}}\right) \equiv {\varvec{Q}}. \end{aligned}$$
(64)

The spherical and the deviatoric parts of \({\varvec{Q}}\) with respect to the inverse metric \({\varvec{C}}^{-1}\) are extracted by employing the fourth-order tensors

$$\begin{aligned}&{\mathbb {K}}^{*\mathrm {T}}:([T{\mathscr {B}}]^{0}_{2},\mathrm {sym}) \rightarrow ([T{\mathscr {B}}]^{0}_{2},\mathrm {sym}), \nonumber \\&{\mathbb {K}}^{*\mathrm {T}}=\tfrac{1}{3}{\varvec{C}}\otimes {\varvec{C}}^{-1}, \end{aligned}$$
(65)

and

$$\begin{aligned}&{\mathbb {M}}^{*\mathrm {T}}:([T{\mathscr {B}}]^{0}_{2}, \mathrm {sym})\rightarrow ([T{\mathscr {B}}]^{0}_{2},\mathrm {sym}), \nonumber \\&{\mathbb {M}}^{*\mathrm {T}}={\mathbb {I}}^{\mathrm {T}}-{ \mathbb {K}}^{*\mathrm {T}}, \end{aligned}$$
(66)

respectively, which are such that

$$\begin{aligned}&{\mathbb {K}}^{*\mathrm {T}}:{\varvec{Q}}=\tfrac{1}{3}\mathrm {tr}({\varvec{C}}^{-1}{\varvec{Q}}){\varvec{C}}, \end{aligned}$$
(67)
$$\begin{aligned}&{\mathbb {M}}^{*\mathrm {T}}:{\varvec{Q}}=({\mathbb {I}}^{\mathrm {T}}-{\mathbb {K}}^{*\mathrm {T}}):{\varvec{Q}}={\varvec{Q}}-\tfrac{1}{3}\mathrm {tr}({\varvec{C}}^{-1}{\varvec{Q}}){\varvec{C}}. \end{aligned}$$
(68)

In this case, it holds that \(\mathrm {tr}\left[ {\varvec{C}}^{-1}\left( {\mathbb {M}}^{*\mathrm {T}}:{\varvec{Q}}\right) \right] =0\).

Finally, we introduce the fourth-order tensor

$$\begin{aligned}&{\mathbb {I}}^{\sharp *}:([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\rightarrow ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym}), \nonumber \\&{\mathbb {I}}^{\sharp *}=\tfrac{1}{2}\left( {\varvec{C}}^{-1}\,{\underline{\otimes }}\,{\varvec{C}}^{-1}+{\varvec{C}}^{-1}\,{\overline{\otimes }}\,{\varvec{C}}^{-1} \right) . \end{aligned}$$
(69)

For every \({\varvec{Q}}\in ([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\), it holds that

$$\begin{aligned}&{\mathbb {I}}^{\sharp *}:{\varvec{Q}}={\varvec{C}}^{-1}{\varvec{Q}}{\varvec{C}}^{-1}. \end{aligned}$$
(70)

In index notation, Eq. (70) implies \(({\mathbb {I}}^{\sharp *}:{\varvec{Q}})^{AB}=({\varvec{C}}^{-1})^{AM}Q_{MN}({\varvec{C}}^{-1})^{NB}\), which means that \({\mathbb {I}}^{\sharp *}\) raises the indices of \({\varvec{Q}}\) through the inverse metric tensor \({\varvec{C}}^{-1}\) rather than through \({\varvec{G}}^{-1}\), the latter being the inverse of the metric tensor \({\varvec{G}}\) in the undeformed configuration. In analogy with \({\mathbb {K}}^{*}\) and \({\mathbb {M}}^{*}\), we also consider the fourth-order tensors

$$\begin{aligned}&{\mathbb {K}}^{\sharp *}:([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\rightarrow ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym}), \nonumber \\&{\mathbb {K}}^{\sharp *}=\tfrac{1}{3}{\varvec{C}}^{-1}\,{\otimes }\,{\varvec{C}}^{-1}, \end{aligned}$$
(71a)
$$\begin{aligned}&{\mathbb {M}}^{\sharp *}:([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\rightarrow ([T{\mathscr {B}}]^{2}_{0},\mathrm {sym}), \nonumber \\&{\mathbb {M}}^{\sharp *}={\mathbb {I}}^{\sharp *}-{\mathbb {K}}^{\sharp *}. \end{aligned}$$
(71b)

For every \({\varvec{Q}}\in ([T{\mathscr {B}}]^{0}_{2},\mathrm {sym})\), we obtain

$$\begin{aligned}&{\mathbb {K}}^{\sharp *}:{\varvec{Q}}=\tfrac{1}{3}\mathrm {tr}({\varvec{C}}^{-1}{\varvec{Q}}){\varvec{C}}^{-1}, \end{aligned}$$
(72a)
$$\begin{aligned}&{\mathbb {M}}^{\sharp *}:{\varvec{Q}}={\varvec{C}}^{-1}{\varvec{Q}}{\varvec{C}}^{-1}-\tfrac{1}{3}\mathrm {tr}({\varvec{C}}^{-1}{\varvec{Q}}){\varvec{C}}^{-1}. \end{aligned}$$
(72b)

Note that the second-order tensor \({\mathbb {M}}^{\sharp *}:{\varvec{Q}}\) is deviatoric in the sense that \(\mathrm {tr}[{\varvec{C}}({\mathbb {M}}^{\sharp *}:{\varvec{Q}})]=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Stefano, S., Carfagna, M., Knodel, M.M. et al. Anelastic reorganisation of fibre-reinforced biological tissues. Comput. Visual Sci. 20, 95–109 (2019). https://doi.org/10.1007/s00791-019-00313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-019-00313-1

Keywords

Navigation