Skip to main content
Log in

Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study

  • Published:
Computing and Visualization in Science

Abstract

Asymptotic homogenization is employed assuming a sharp length scale separation between the periodic structure (fine scale) and the whole composite (coarse scale). A classical approach yields the linear elastic-type coarse scale model, where the effective elastic coefficients are computed solving fine scale periodic cell problems. We generalize the existing results by considering an arbitrary number of subphases and general periodic cell shapes. We focus on the stress jump conditions arising in the cell problems and explicitly compute the corresponding interface loads. The latter represent a key driving force to obtain nontrivial cell problems solutions whenever discontinuities of the coefficients between the host medium (matrix) and the subphases occur. The numerical simulations illustrate the geometrically induced anisotropy and foster the comparison between asymptotic homogenization and well established Eshelby based techniques. We show that the method can be routinely implemented in three dimensions and should be applied to hierarchical hard tissues whenever the precise shape and arrangement of the subphases cannot be ignored. Our numerical results are benchmarked exploiting the semi-analytical solution which holds for cylindrical aligned fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. See cell problems (2.23–2.25), p. 2526 and relationships (3.5–3.8), p. 2527, [24]. The symbols here denoted by \(\tilde{C}\), \(\chi \) and \(\displaystyle \left\langle M \right\rangle \) are there denoted by \(C^*\), N and H, respectively.

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auriault, J.L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media, vol. 149. Wiley, Hoboken (2010)

    Google Scholar 

  3. Bakhvalov, N., Panasenko, G.: Homogenisation Averaging Processes in Periodic Media. Springer, New York (1989)

    Book  MATH  Google Scholar 

  4. Boresi, A.P., Chong, K., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley, Hoboken (2010)

    Book  Google Scholar 

  5. Burridge, R., Keller, J.: Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70, 1140–1146 (1981)

    Article  MATH  Google Scholar 

  6. Cherkaev, A., Kohn, R.: Topics in the Mathematical Modelling of Composite Materials. Springer, New York (1997)

    Book  MATH  Google Scholar 

  7. Constantinescu, A., Korsunsky, A.: Elasticity with Mathematica: An Introduction to Continuum Mechanics and Linear Elasticity. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  8. Den Toonder, J., Van Dommelen, J., Baaijens, F.: The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation. Model. Simul. Mater. Sci. Eng. 7(6), 909 (1999)

    Article  Google Scholar 

  9. Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser A Math. Phys. Sci. 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghosh, S., Lee, K., Moorthy, S.: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 132(1), 63–116 (1996)

    Article  MATH  Google Scholar 

  11. Grimal, Q., Raum, K., Gerisch, A., Laugier, P.: A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech. Model. Mechanobiol. 10(6), 925–937 (2011)

    Article  Google Scholar 

  12. Hassanizadeh, M., Gray, W.: General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

    Article  Google Scholar 

  13. Hazanov, S.: Hill condition and overall properties of composites. Arch. Appl. Mech. 68(6), 385–394 (1998)

    Article  MATH  Google Scholar 

  14. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

  15. Holmes, M.: Introduction to Perturbation Method. Springer, New York (1995)

    Book  Google Scholar 

  16. Hori, M., Nemat-Nasser, S.: On two micromechanics theories for determining micro-macro relations in heterogeneous solids. Mech. Mater. 31(10), 667–682 (1999)

    Article  Google Scholar 

  17. Hull, D., Clyne, T.: An Introduction to Composite Materials. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  18. Jones, R.M.: Mechanics of Composite Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  19. Mei, C.C., Vernescu, B.: Homogenization Methods for Multiscale Mechanics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  20. Milton, G.W.: The Theory of Composites, vol. 6. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  21. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  22. Papanicolau, G., Bensoussan, A., Lions, J.L.: Asymptotic Analysis for Periodic Structures. Elsevier, Amsterdam (1978)

    Google Scholar 

  23. Parnell, W.J., Abrahams, I.D.: Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves. Wave Motion 43(6), 474–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Parnell, W.J., Abrahams, I.D.: Homogenization for wave propagation in periodic fibre-reinforced media with complex microstructure. I. Theory. J. Mech. Phys. Solids 56(7), 2521–2540 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parnell, W.J., Grimal, Q.: The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J. R. Soc. Interface 6(30), 97–109 (2009)

    Article  Google Scholar 

  26. Peerlings, R., Fleck, N.: Computational evaluation of strain gradient elasticity constants. Int. J. Multiscale Comput. Eng. 2(4), 599–619 (2004)

  27. Penta, R., Ambrosi, D., Quarteroni, A.: Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math. Models Methods Appl. Sci. 25(1), 79–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Penta, R., Ambrosi, D., Shipley, R.J.: Effective governing equations for poroelastic growing media. Q. J. Mech. Appl. Math. 67(1), 69–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Penta, R., Gerisch, A.: The asymptotic hmoogenization elasticity tensor properties for composites with material discontinuities. Ccontinuum Mech. Thermodyn. (Submitted), 1–25 (2015)

  30. Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J. Appl. Math. Mech. 9(1), 49–58 (1929)

    Article  MATH  Google Scholar 

  31. Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory-Lecture Notes in Physics 127. Springer, New York (1980)

    Google Scholar 

  32. Segurado, J., Llorca, J.: A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50(10), 2107–2121 (2002)

    Article  MATH  Google Scholar 

  33. Tiburtius, S., Schrof, S., Molnár, F., Varga, P., Peyrin, F., Grimal, Q., Raum, K., Gerisch, A.: On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech. Model. Mechanobiol. 13, 1003–1023 (2014)

    Article  Google Scholar 

  34. Voigt, W.: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik und Chemie, Neue Folge 38, 573–587 (1888)

  35. Walsh, W., Ohno, M., Guzelsu, N.: Bone composite behaviour: effects of mineral-organic bonding. J. Mater. Sci. Mater. Med. 5(2), 72–79 (1994)

    Article  Google Scholar 

  36. Weiner, S., Wagner, H.D.: The material bone: Structure-mechanical function relations. Ann. Rev. Mater. Sci. 28, 271–298 (1998)

    Article  Google Scholar 

  37. Zohdi, T.I., Wriggers, P.: An Introduction to Computational Micromechanics, vol. 20. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG priority program SPP 1420, Project GE 1894/3 and RA 1380/7 Multiscale structure-functional modeling of musculoskeletal mineralized tissues, PIs Alf Gerisch and Kay Raum. The authors would like to sincerely thank Quentin Grimal for access to the semi-analytic code for asymptotic homogenization of fiber reinforced composites and suggestions concerning the numerical benchmark. We acknowledge Eli Duenisch for programming support and Sara Tiburtius for insightful discussions about the content of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimondo Penta.

Additional information

Communicated by Alfio Grillo.

Appendix: The asymptotic model for aligned fibers

Appendix: The asymptotic model for aligned fibers

In order to compare our results to those found in [24], we specialize our model by matching any assumption enforced by the authors of that paper. We identify our domain \(\varOmega \) with a periodic composite reinforced by aligned fibers, where each subphase \(\varOmega _{\alpha }\) is a fiber which extends up to the domain boundary, whereas \(\varOmega _c\) represents the host medium. Once periodicity is exploited, the periodic cell then comprises a number N of aligned fibers which extend from bottom to top of it. They are, without loss of generality, aligned with the \(\varvec{e}_3\) axis. See Fig. 9, where the geometrical setting related to the particular case of a single cylindrical fiber in a regular prismatic lattice is depicted.

Material properties \(\mathbb {C}^c\) and \(\mathbb {C}^{\alpha }\) are assumed constant with respect to both the fine scale \(\varvec{y}\) and the coarse scale \(\varvec{x}\). According to this scenario, the cell problem (5154) reads

$$\begin{aligned} \displaystyle&C_{ijpq}^c \frac{\partial ^2 \chi _{pkl}^c}{\partial y_j \partial y_q} =0\,\, \text {in}\,\, \varOmega _c, \end{aligned}$$
(90)
$$\begin{aligned}&C_{ijpq}^{r} \frac{\partial ^2 \chi _{pkl}^{r}}{\partial y_j \partial y_q} =0\,\, \text {in}\,\, \varOmega _{r}, \end{aligned}$$
(91)
$$\begin{aligned}&C_{ijpq}^c \frac{\partial \chi _{pkl}^c}{\partial y_q} n_j^{r}+C_{ijkl}^cn^{r}_j \nonumber \\&\quad =C_{ijpq}^{r} \frac{\partial \chi _{pkl}^{r}}{\partial y_q} n_j^{r}+C_{ijkl}^{r}n^{r}_j \,\, \text {on} \,\, \varGamma ^{r}, \end{aligned}$$
(92)
$$\begin{aligned}&\chi ^c_{ikl}=\chi ^{r}_{ikl} \,\, \text {on} \,\, \varGamma ^{r}, \end{aligned}$$
(93)

\(r=1,\ldots N\) and summation over repeated indices \(j,p,q=1,2,3\) is understood. In the above problem, we slightly rearranged terms, we replaced the dummy index \(\alpha \) with r, cf. [24], and exploited property (10). We then recognize that the unknowns \(\chi ^c\), \(\chi ^{r}\) do not depend on \(y_3\) for reasons of symmetry. In particular, since

$$\begin{aligned} n^r_1=n^r_1(y_1,y_2);\quad n^r_2=n^r_2(y_1,y_2);\quad n_3^r=0, \end{aligned}$$
(94)

and the elasticity tensors \(\mathbb {C}^c\) and \(\mathbb {C}^r\) are \(\varvec{y}\)-constant, the solution ansatz

$$\begin{aligned} \chi ^c (y_1,y_2);\quad \chi ^{r}(y_1,y_2) \end{aligned}$$
(95)

satisfies the cell problems (9093). Hence, the cell problems (9093) are now to be solved in two dimensions only and they can be rewritten, setting \(\mathbb {C}^c=\mathbb {C}^0\), as

$$\begin{aligned}&C_{i\alpha s \beta }^{r} \frac{\partial ^2 \chi _{skl}^{r}}{\partial y_{\alpha } \partial y_{\beta }} =0\,\, \text {in}\,\, D_{r}, \end{aligned}$$
(96)
$$\begin{aligned}&C_{i\alpha s\beta }^0 \frac{\partial \chi _{skl}^0}{\partial y_\beta } n_{\alpha }^{r}+C_{i\alpha k l}^0n^{r}_{\alpha }\nonumber \\&\quad =C_{i\alpha s\beta }^{r} \frac{\partial \chi _{skl}^{ r}}{\partial y_{\beta }} n_{\alpha }^{r}+C_{i\alpha kl}^{r}n^{r}_{\alpha } \,\,\, \text {on} \,\, \partial D^{r}, \end{aligned}$$
(97)
$$\begin{aligned}&\chi ^0_{ikl}=\chi ^{r}_{ikl} \,\,\, \text {on} \,\, \partial D^{r}, \end{aligned}$$
(98)

\(r=0,1,\ldots N\), and summation over repeated indices \(s=1,2,3\), \(\alpha , \beta =1,2\) is understood. Here, the domain \(D \subset \mathbb {R}^2\) represents the two-dimensional cross section of the periodic cell \(\varOmega \). We set \(\varOmega _0=\varOmega _c\) and introduce the following notation for the sake of convenience:

$$\begin{aligned}&\varOmega =D\times (0,1); \quad \varOmega _{r}=D_{r} \times (0,1);\nonumber \\&\bar{D}=\bigcup ^{N}_{r=0} \bar{D}_{r}; \quad \varGamma ^{r}=\partial D_{r}\times (0,1). \end{aligned}$$
(99)

Accounting for notation (99), the componentwise definition of the effective elasticity tensor (60), and continuity (98), we finally have:

$$\begin{aligned}&\tilde{C}_{ijkl}=\sum _{r=0}^N \phi _r C_{ijkl}^r+\sum ^{N}_{r=1} \left( C_{ijs\beta }^{r}-C^{0}_{ijs \beta } \right) \left\langle M^r_{s \beta k l}\right\rangle _r,\nonumber \\&\phi _r=\frac{|\varOmega _r|}{|\varOmega |}=\frac{|D_r|}{|D|}, \end{aligned}$$
(100)
$$\begin{aligned}&\left\langle M^r_{s\beta k l}\right\rangle _r= \left\langle \frac{\partial \chi _{skl}^r}{\partial y_{\beta }} \right\rangle _r=\frac{1}{|D|} \int _{\partial D_r} \chi _{skl}^r n_{\beta }^{r}\,\,\text {dl}. \end{aligned}$$
(101)

The functional form of the effective elasticity tensor (100), as well as the corresponding cell problems (9698) and auxiliary tensor (101), exactly coincideFootnote 1 with those found in [24], which were derived accounting for a periodic fiber reinforced composite and applying asymptotic homogenization to the domain cross section only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penta, R., Gerisch, A. Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput. Visual Sci. 17, 185–201 (2015). https://doi.org/10.1007/s00791-015-0257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-015-0257-8

Keywords

Navigation