Skip to main content
Log in

On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The key parameters influencing the elastic properties of the mineralized turkey leg tendon (MTLT) were investigated. Two structurally different tissue types appearing in the MTLT were considered: circumferential and interstitial tissue. These differ in their amount of micropores and their average diameter of the mineralized collagen fibril bundles. A multiscale model representing the apparent elastic stiffness tensor of MTLT tissue was developed using the Mori–Tanaka and the self-consistent homogenization schemes. The volume fraction of mineral (hydroxyapatite) in the fibril bundle, \(\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\), and the tissue microporosity are the variables of the model. The MTLT model was analyzed performing a global sensitivity analysis (Elementary Effects method) and a parametric study. The stiffnesses parallel (axial) and perpendicular (transverse) to the MTLT long axis were the only significantly sensitive components of the apparent stiffness tensor of MTLT tissue. The most important parameters influencing these apparent stiffnesses are \(\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\), tissue microporosity, as well as shape and distribution of the minerals in the fibril bundle (intra- vs. interfibrillar). The predicted apparent stiffness was converted to acoustic impedance for model validation. From measurements on embedded MTLT samples, including 50- and 200-MHz scanning acoustic microscopy as well as synchrotron radiation micro-computed tomography, we obtained site-matched acoustic impedance and \(\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\) data of circumferential and interstitial tissue. The experimental and the model data compare very well for both tissue types (relative error 6–8 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\text {axi}\) :

Axial direction (parallel to tendon long axis)

\({\text {CIR}}\) :

Circumferential MTLT tissue

\({\text {col}}\) :

Collagen

\({\mathrm{DMB}}\) :

Degree of mineralization of bone

\({\text {ES}}\) :

Extrafibrillar space

\({\text {ha}}\) :

Hydroxyapatite

\({\text {INT}}\) :

Interstitial MTLT tissue

\({\text {MCF}}\) :

Mineralized collagen fibril

\({\text {MCFB}}\) :

Mineralized collagen fibril bundle

\({\text {MMT}}\) :

Musculoskeletal mineralized tissue

\({\text {mp}}\) :

Micropores

\({\text {MTLT}}\) :

Mineralized turkey leg tendon

\({\text {np}}\) :

Nanopores

\({\text {pmma}}\) :

Polymethylmethacrylate

ROI :

Region of interest

SAM:

Scanning acoustic microscopy

SR-\(\mu \)CT:

Synchrotron radiation micro-computed tomography

\(\text {trv}\) :

Transverse direction (perpendicular to tendon long axis)

Subscript  \(_i\) :

Subscript of quantities which relate to ROI \(i\)

\(\nu , \nu _i\) :

Direction, transverse (trv) or axial (axi)

\(T, T_i\) :

Type of tissue, CIR, INT, or CIR/INT

\({\mathcal {S}}_{A}\) :

Model of composite material \(A\)

\(C_A,\, C_{\nu }^{A}\) :

Apparent stiffness tensor of material \(A\); component of \(C_A\) in direction \(\nu \)

\(Z^{A}_\nu \) :

Predicted acoustic impedance of material \(A\) in direction \(\nu \)

\(\widetilde{Z}, \widetilde{Z}_{i}\) :

Experimental acoustic impedance

\({\mathrm{DMB}}, {\mathrm{DMB}}_i\) :

Experimental DMB

\(\mathrm{{\mathrm{DMB}}}^{{\text {MCFB}}}\) :

DMB of MCFB tissue

\(\hbox {vf}_B^A\) :

Volume fraction of material \(B\) in (composite) material \(A\)

\(\widetilde{\hbox {vf}}_{{\text {mp}}}\) :

Experimental microporosity of MTLT tissue derived from light microscopy images

\(\hbox {ar}_A\) :

Aspect ratio of a spheroidal inclusion made of material \(A\)

\(\text {rRMSE}_{\nu }^T\) :

Relative root mean square error of the predicted acoustic impedance w.r.t. experimentally assessed values for tissue type \(T\) in direction \(\nu \)

\(\mathrm{rME}_{\nu }^T\) :

Maximum relative error of the predicted acoustic impedance w.r.t. a linear regression model of the experimental data for tissue type \(T\) in direction \(\nu \)

References

  • Akkus O (2005) Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model. J Biomech Eng 127(3):383–390

    Article  Google Scholar 

  • Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD, Wopenka B, Thomopoulos S (2012) The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface 9(73):1774–1786

    Article  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math Phys Sci 241(1226):376–396

    Article  MATH  MathSciNet  Google Scholar 

  • Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4:612–616

    Article  Google Scholar 

  • Fratzl P (2008) Collagen: structure and mechanics. Springer, Berlin

    Book  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  Google Scholar 

  • Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  Google Scholar 

  • Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïed A, Laugier P (2013) Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS ONE 8(3):58043

    Article  Google Scholar 

  • Grimal Q, Raum K, Gerisch A, Laugier P (2011) A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 10(6):925–937

    Article  Google Scholar 

  • Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mech 213(1–2):131–154

    Article  MATH  Google Scholar 

  • Hellmich C, Barthélémy JF, Dormieux L (2004) Mineral–collagen interactions in elasticity of bone ultrastructure: a continuum micromechanics approach. Eur J Mech A Solids 23(5):783–810

    Article  MATH  Google Scholar 

  • Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  Google Scholar 

  • Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746

    Google Scholar 

  • Lakshmanan S, Bodi A, Raum K (2007) Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements. IEEE Trans Ultrason Ferroelectr Freq Control 54(8):1560–1570

    Article  Google Scholar 

  • Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110(1):39–54

    Article  Google Scholar 

  • Lees S, Prostak KS, Ingle VK, Kjoller K (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif Tissue Int 55(3):180–189

    Article  Google Scholar 

  • Malo MKH, Rohrbach D, Isaksson H, Töyräs J, Jurvelin JS, Tamminen IS, Kröger H, Raum K (2013) Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 53(2):451–458

    Article  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Nair AK, Gautieri A, Chang SW, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724

    Article  Google Scholar 

  • Nikolov S, Raabe D (2008) Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 94(11):4220–4232

    Article  Google Scholar 

  • Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29(11):2672–2681

    Google Scholar 

  • Raum K (2008) Microelastic imaging of bone. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1417–1431

    Article  Google Scholar 

  • Raum K (2011) Microscopic elastic properties. In: Laugier P, Haïat G (eds) Bone quantitative ultrasound, chap 16, 1st edn. Springer, Berlin, pp 409–440

    Chapter  Google Scholar 

  • Raum K, Cleveland RC, Peyrin F, Laugier P (2006a) Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 51(3):747–758

    Article  Google Scholar 

  • Raum K, Leguerney I, Chandelier F, Talmant M, Saïed A, Peyrin F, Laugier P (2006b) Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation \(\mu \)CT. Phys Med Biol 51(3):733–746

  • Raum K, Hofmann T, Leguerney I, Saïed A, Peyrin F, Vico L, Laugier P (2007) Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice. Bone 41(6):1017–1024

    Google Scholar 

  • Raum K, Laugier P, Grimal Q, Gerisch A (2011) Multiscale structure-functional modeling of lamellar bone. Proc Meet Acoust 9(1):020005

    Google Scholar 

  • Reisinger AG, Pahr DH, Zysset PK (2010) Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomech Model Mechanobiol 9(5):499–510

    Article  Google Scholar 

  • Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K (2012) Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech 45(13):2264–2270

    Article  Google Scholar 

  • Rupin F, Saïed A, Dalmas D, Peyrin F, Haupert S, Raum K, Barthel E, Boivin G, Laugier P (2009) Assessment of microelastic properties of bone using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn J Appl Phys 48(7):07GK01

    Article  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, New York

    Google Scholar 

  • Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater Med 13(3):333–337

    Article  Google Scholar 

  • Spiesz EM, Roschger P, Zysset PK (2012a) Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth. J Mech Behav Biomed Mater 12:20–28

    Article  Google Scholar 

  • Spiesz EM, Roschger P, Zysset PK (2012b) Influence of mineralization and microporosity on tissue elasticity: experimental and numerical investigations on mineralized turkey leg tendons. Calcif Tissue Int 90(4):319–329

    Article  Google Scholar 

  • Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333

    Article  Google Scholar 

  • Vaughan TJ, McCarthy CT, McNamara L (2012) A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone. J Mech Behav Biomed Mater 12:50–62

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  Google Scholar 

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alf Gerisch.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (SPP 1420 Grants RA 1380/7, GE 1894/3) and has been conducted within the European Associated Laboratory “Ultrasound Based Assessment of Bone” (ULAB).

Appendix

Appendix

1.1 Phase volume fractions

We give below the complete set of formulas that determine the phase volume fractions of our model sequence.

1.1.1 MTLT tissue

The phase volume fractions of the composite MTLT (CIR or INT tissue) are given by:

$$\begin{aligned}&\hbox {vf}^\mathrm{MTLT}_\mathrm{mp} = {\left\{ \begin{array}{ll} \mathrm{Const }, &{} \text {for }\mathrm{Const } \in [0,0.2], \qquad \text {case (C)}\, ,\\ a\cdot \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}+ b, &{} \text {for }\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\in [0.25,0.35],\\ ~ &{} a<0\qquad \text {case (MD)}. \end{array}\right. }\\&{\hbox {vf}_{{\text {MCFB}}}^{\mathrm{MTLT}}} = 1- {\hbox {vf}_{{\text {mp}}}^{\mathrm{MTLT}}}. \end{aligned}$$

1.1.2 MCFB

The phase volume fractions of the MCFB are given by:

$$\begin{aligned} \hbox {vf}_{{\text {MCF}}}^{{\text {MCFB}}}&= \alpha _{{\text {MCF}}}\cdot \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}+ \hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}\\&= \alpha _{{\text {MCF}}}\cdot \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}+ h\left( \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\right) ,\\ \hbox {vf}_{{\text {ES}}}^{{\text {MCFB}}}&= 1 - \hbox {vf}_{{\text {MCF}}}^{{\text {MCFB}}}. \end{aligned}$$

The function \(h\) is derived based on an empirical formula of (Raum et al. (2006a), Eq. (10), p. 750), which connects the collagen volume fraction \(\hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}\), the mineral volume fraction \(\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\) and the nanopores volume fraction \(\hbox {vf}_{{\text {np}}}^{{\text {MCFB}}}\) to each other:

$$\begin{aligned} \frac{\hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}}{\hbox {vf}_{{\text {np}}}^{{\text {MCFB}}}} = 0.36 + 0.084 \cdot \exp \left( 6.7 \cdot \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\right) :=\gamma . \end{aligned}$$
(17)

Since ha, col and np are the sole basic constituents of the MCFB, their corresponding volume fractions \(\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}, \hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}\) and \(\hbox {vf}_{{\text {np}}}^{{\text {MCFB}}}\) sum up to one. We then eliminate \(\hbox {vf}_{{\text {np}}}^{{\text {MCFB}}}\) from Eq. (17) using \(\hbox {vf}_{{\text {np}}}^{{\text {MCFB}}} = 1-\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}- \hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}\) and obtain

$$\begin{aligned}&\frac{\hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}}{1-\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}- \hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}} = 0.36 + 0.084 \cdot \exp \left( 6.7 \cdot \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\right) \\&\quad \quad \Leftrightarrow \hbox {vf}_{{\text {col}}}^{{\text {MCFB}}}= (1 - \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}) \cdot \frac{\gamma }{(1 + \gamma )}:=h\left( \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\right) . \end{aligned}$$

The function \(h\) is defined by the right-hand side of the equation.

The mineral volume fraction \(\hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}\) is given by

$$\begin{aligned} \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}=\frac{\mathrm{{\mathrm{DMB}}}}{\rho _{{\text {ha}}}\cdot (1-\beta )} \end{aligned}$$

where \(\beta \in [0,\widetilde{\hbox {vf}}_{{\text {mp}}}]\) is the amount of microporosity which influences the DMB measurements. \(\rho _{{\text {ha}}}\) is the mass density of ha and \(\mathrm {{\mathrm{DMB}}}\) is the experimental DMB value.

1.1.3 MCF

The phase volume fractions of the MCF are given by:

$$\begin{aligned} \hbox {vf}_{{\text {ha}}}^{{\text {MCF}}}&= \alpha _{{\text {MCF}}}\cdot \frac{ \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}}{ \hbox {vf}_{{\text {MCF}}}^{{\text {MCFB}}}},\\ \hbox {vf}_{{\text {col}}}^{{\text {MCF}}}&= 1 - \hbox {vf}_{{\text {ha}}}^{{\text {MCF}}}. \end{aligned}$$

1.1.4 ES

The phase volume fractions of the ES are given by:

$$\begin{aligned} \hbox {vf}_{{\text {ha}}}^{{\text {ES}}}&= \left( 1 - \alpha _{{\text {MCF}}}\right) \cdot \frac{ \hbox {vf}_{{\text {ha}}}^{{\text {MCFB}}}}{ 1 - \hbox {vf}_{{\text {MCF}}}^{{\text {MCFB}}}},\\ \hbox {vf}_{{\text {np}}}^{{\text {ES}}}&= 1 - \hbox {vf}_{{\text {ha}}}^{{\text {ES}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiburtius, S., Schrof, S., Molnár, F. et al. On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 13, 1003–1023 (2014). https://doi.org/10.1007/s10237-013-0550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0550-8

Keywords

Navigation