Skip to main content

Advertisement

Log in

Deep learning for virtual orthodontic bracket removal: tool establishment and application

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract   

Objective

We aimed to develop a tool for virtual orthodontic bracket removal based on deep learning algorithms for feature extraction from bonded teeth and to demonstrate its application in a bracket position assessment scenario.

Materials and methods

Our segmentation network for virtual bracket removal was trained using dataset A, containing 978 bonded teeth, 20 original teeth, and 20 brackets generated by scanners. The accuracy and segmentation time of the network were tested by dataset B, which included an additional 118 bonded teeth without knowing the original tooth morphology. This tool was then applied for bracket position assessment. The clinical crown center, bracket center, and orientations of separated teeth and brackets were extracted for analyzing the linear distribution and angular deviation of bonded brackets.

Results

This tool performed virtual bracket removal in 2.9 ms per tooth with accuracies of 98.93% and 97.42% (P < 0.01) in datasets A and B, respectively. The tooth surface and bracket characteristics were extracted and used to evaluate the results of manually bonded brackets by 49 orthodontists. Personal preferences for bracket angulation and bracket distribution were displayed graphically and tabularly.

Conclusions

The tool's efficiency and precision are satisfactory, and it can be operated without original tooth data. It can be used to display the bonding deviation in the bracket position assessment scenario.

Clinical significance

With the aid of this tool, unnecessary bracket removal can be avoided when evaluating bracket positions and modifying treatment plans. It has the potential to produce retainers and orthodontic devices prior to tooth debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Panayi NC, Tsolakis AI, Athanasiou AE (2020) Digital assessment of direct and virtual indirect bonding of orthodontic brackets: A clinical prospective cross-sectional comparative investigation. Int Orthod 18:714–721. https://doi.org/10.1016/j.ortho.2020.09.007

    Article  PubMed  Google Scholar 

  2. Marsh K, Weissheimer A, Yin K, Chamberlain-Umanoff A, Tong H, Sameshima GT (2021) Three-dimensional assessment of virtual bracket removal for orthodontic retainers: A prospective clinical study. Am J Orthod Dentofacial Orthop 160:302–311. https://doi.org/10.1016/j.ajodo.2020.09.027

    Article  PubMed  Google Scholar 

  3. Nakada N, Uchida Y, Inaba M, Kaetsu R, Shimizu N, Namura Y, Motoyoshi M (2021) Pain and removal force associated with bracket debonding: a clinical study. J Appl Oral Sci 29:e20200879. https://doi.org/10.1590/1678-7757-2020-0879

    Article  PubMed  PubMed Central  Google Scholar 

  4. Israel M, Kusnoto B, Evans CA, Begole E (2011) A comparison of traditional and computer-aided bracket placement methods. Angle Orthod 81:828–835. https://doi.org/10.2319/072110-425.1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Duarte MEA, Gribel BF, Spitz A, Artese F, Miguel JAM (2020) Reproducibility of digital indirect bonding technique using three-dimensional (3D) models and 3D-printed transfer trays. Angle Orthod 90:92–99. https://doi.org/10.2319/030919-176.1

    Article  PubMed  Google Scholar 

  6. Möhlhenrich SC, Alexandridis C, Peters F, Kniha K, Modabber A, Danesh G, Fritz U (2020) Three-dimensional evaluation of bracket placement accuracy and excess bonding adhesive depending on indirect bonding technique and bracket geometry: an in-vitro study. Head Face Med 16:17. https://doi.org/10.1186/s13005-020-00231-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Faus-Matoses I, Guinot Barona C, Zubizarreta-Macho Á, Paredes-Gallardo V, Faus-Matoses V (2021) A Novel Digital Technique for Measuring the Accuracy of an Indirect Bonding Technique Using Fixed Buccal Multibracket Appliances. J Pers Med 11:932. https://doi.org/10.3390/jpm11090932

    Article  PubMed  PubMed Central  Google Scholar 

  8. Adel SM, Vaid NR, El-Harouni N, Kassem H, Zaher AR (2022) TIP, TORQUE & ROTATIONS: How accurately do digital superimposition software packages quantify tooth movement? Prog Orthod 23:8. https://doi.org/10.1186/s40510-022-00402-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adel SM, Vaid NR, El-Harouni N, Kassem H, Zaher AR (2022) Digital model superimpositions: are different software algorithms equally accurate in quantifying linear tooth movements? BMC Oral Health 22:103. https://doi.org/10.1186/s12903-022-02129-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adel SM, Vaid NR, El-Harouni N, Kassem H, Park JH, Zaher AR (2023) Quantifying maxillary anterior tooth movement in digital orthodontics: Does the choice of the superimposition software matter? J World Fed Orthod 12:187–196. https://doi.org/10.1016/j.ejwf.2023.07.002

    Article  PubMed  Google Scholar 

  11. Vollmer S, Mateen BA, Bohner G, Király FJ, Ghani R, Jonsson P, Cumbers S, Jonas A, McAllister KSL, Myles P, Granger D, Birse M, Branson R, Moons KGM, Collins GS, Ioannidis JPA, Holmes C, Hemingway H (2020) Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. Bmj 368:l6927. https://doi.org/10.1136/bmj.l6927

    Article  PubMed  Google Scholar 

  12. Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 91:103226. https://doi.org/10.1016/j.jdent.2019.103226

    Article  PubMed  Google Scholar 

  13. Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schürmann F, Krejci I, Markram H (2019) Caries Detection with Near-Infrared Transillumination Using Deep Learning. J Dent Res 98:1227–1233. https://doi.org/10.1177/0022034519871884

    Article  PubMed  CAS  Google Scholar 

  14. Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, Uribe S, Krois J (2021) Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J Dent 107:103610. https://doi.org/10.1016/j.jdent.2021.103610

    Article  PubMed  Google Scholar 

  15. Jandoo T (2020) WHO guidance for digital health: What it means for researchers. Digit Health 6:2055207619898984. https://doi.org/10.1177/2055207619898984

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leite AF, Gerven AV, Willems H, Beznik T, Lahoud P, Gaêta-Araujo H, Vranckx M, Jacobs R (2021) Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Investig 25:2257–2267. https://doi.org/10.1007/s00784-020-03544-6

    Article  PubMed  Google Scholar 

  17. Liu MQ, Xu ZN, Mao WY, Li Y, Zhang XH, Bai HL, Ding P, Fu KY (2022) Deep learning-based evaluation of the relationship between mandibular third molar and mandibular canal on CBCT. Clin Oral Investig 26:981–991. https://doi.org/10.1007/s00784-021-04082-5

    Article  PubMed  Google Scholar 

  18. Moidu NP, Sharma S, Chawla A, Kumar V, Logani A (2022) Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system. Clin Oral Investig 26:651–658. https://doi.org/10.1007/s00784-021-04043-y

    Article  PubMed  Google Scholar 

  19. Wang H, Minnema J, Batenburg KJ, Forouzanfar T, Hu FJ, Wu G (2021) Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning. J Dent Res 100:943–949. https://doi.org/10.1177/00220345211005338

    Article  PubMed  CAS  Google Scholar 

  20. Zhao C, Chen Q, Yu S, Xu C, Li X, Zhang C, Gao L (2020) Effect of interleukin-22 on osteogenic differentiation and the osteoclastogenic response of human periodontal ligament fibroblasts in vitro. J Periodontol 91:1085–1097. https://doi.org/10.1002/jper.19-0470

    Article  PubMed  CAS  Google Scholar 

  21. Takeda S, Mine Y, Yoshimi Y, Ito S, Tanimoto K, Murayama T (2021) Landmark annotation and mandibular lateral deviation analysis of posteroanterior cephalograms using a convolutional neural network. J Dent Sci 16:957–963. https://doi.org/10.1016/j.jds.2020.10.012

    Article  PubMed  Google Scholar 

  22. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51. https://doi.org/10.1016/j.media.2016.10.010

    Article  PubMed  CAS  Google Scholar 

  23. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR (2021) Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod 22:18. https://doi.org/10.1186/s40510-021-00361-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, Demarco F, Krois J (2021) Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Investig 25:4299–4309. https://doi.org/10.1007/s00784-021-03990-w

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu X, Liu C, Zheng Y (2019) 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks. IEEE Trans Vis Comput Graph 25:2336–2348. https://doi.org/10.1109/tvcg.2018.2839685

    Article  PubMed  Google Scholar 

  26. Cui Z, Li C, Wang W (2019) ToothNet: automatic tooth instance segmentation and identification from cone beam CT images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp 6361–6370. https://doi.org/10.1109/CVPR.2019.00653

  27. Chan HP, Samala RK, Hadjiiski LM, Zhou C (2020) Deep Learning in Medical Image Analysis. Adv Exp Med Biol 1213:3–21. https://doi.org/10.1007/978-3-030-33128-3_1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sardarian A, Danaei SM, Shahidi S, Boushehri SG, Geramy A (2014) The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament–a finite element study. Prog Orthod 15:50. https://doi.org/10.1186/s40510-014-0050-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andrews LF (1979) The straight-wire appliance. Br J Orthod 6:125–143. https://doi.org/10.1179/bjo.6.3.125

    Article  PubMed  CAS  Google Scholar 

  30. Mazzeo F, Marchese E, Assumma V, Sepe J, Perillo L (2013) A new device (FAQ.FIX®) for orthodontic bracket placement in straight wire technique. Prog Orthod 14:23. https://doi.org/10.1186/2196-1042-14-23

    Article  PubMed  PubMed Central  Google Scholar 

  31. Charles RQ, Su H, Kaichun M, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp 77–85. https://doi.org/10.1109/CVPR.2017.16

  32. Wu TH, Lian C, Lee S, Pastewait M, Piers C, Liu J, Wang F, Wang L, Chiu CY, Wang W, Jackson C, Chao WL, Shen D, Ko CC (2022) Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and Landmark Localization on 3D Intraoral Scans. IEEE Trans Med Imaging 41:3158–3166. https://doi.org/10.1109/tmi.2022.3180343

    Article  PubMed  PubMed Central  Google Scholar 

  33. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  34. Schwendicke F, Samek W, Krois J (2020) Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 99:769–774. https://doi.org/10.1177/0022034520915714

    Article  PubMed  CAS  Google Scholar 

  35. Budd S, Robinson EC, Kainz B (2021) A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal 71:102062. https://doi.org/10.1016/j.media.2021.102062

    Article  PubMed  Google Scholar 

  36. Mangano F, Gandolfi A, Luongo G, Logozzo S (2017) Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health 17:149. https://doi.org/10.1186/s12903-017-0442-x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu J, Hao J, Lin H, Pan W, Yang J, Feng Y, Wang G, Li J, Jin Z, Zhao Z, Liu Z (2023) Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction. Patterns (N Y) 4(9):100825 https://doi.org/10.1016/j.patter.2023.100825

  38. Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, Garcia-Pedrero A, Ramirez SC, Kong D, Moody AR, Tyrrell PN (2019) Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review. Can Assoc Radiol J 70:344–353. https://doi.org/10.1016/j.carj.2019.06.002

    Article  PubMed  Google Scholar 

  39. Al-Jewair TS, Azarpazhooh A, Suri S, Shah PS (2009) Computer-assisted learning in orthodontic education: a systematic review and meta-analysis. J Dent Educ 73:730–739

    Article  PubMed  Google Scholar 

  40. Johal A, Bourauel C, Moghanchi S, Dickerson T, Gaudin P, Elliott EL (2022) The Tip and Torque adjustable bracket as a new concept in design. Angle Orthod 92:380–387. https://doi.org/10.2319/061421-474.1

    Article  PubMed  PubMed Central  Google Scholar 

  41. Song J, Kim M (2020) Accuracy on Scanned Images of Full Arch Models with Orthodontic Brackets by Various Intraoral Scanners in the Presence of Artificial Saliva. Biomed Res Int 2020:2920804. https://doi.org/10.1155/2020/2920804

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shin SH, Yu HS, Cha JY, Kwon JS, Hwang CJ (2021) Scanning Accuracy of Bracket Features and Slot Base Angle in Different Bracket Materials by Four Intraoral Scanners: An In Vitro Study. Materials (Basel) 14:365. https://doi.org/10.3390/ma14020365

    Article  PubMed  ADS  CAS  Google Scholar 

  43. Koo BC, Chung CH, Vanarsdall RL (1999) Comparison of the accuracy of bracket placement between direct and indirect bonding techniques. Am J Orthod Dentofacial Orthop 116:346–351. https://doi.org/10.1016/s0889-5406(99)70248-9

    Article  PubMed  CAS  Google Scholar 

  44. Park JH, Choi JY, Oh SH, Kim SH (2021) Three-Dimensional Digital Superimposition of Orthodontic Bracket Position by Using a Computer-Aided Transfer Jig System: An Accuracy Analysis. Sensors (Basel) 21:9511. https://doi.org/10.3390/s21175911

    Article  Google Scholar 

  45. Armstrong D, Shen G, Petocz P, Darendeliler MA (2007) A comparison of accuracy in bracket positioning between two techniques–localizing the centre of the clinical crown and measuring the distance from the incisal edge. Eur J Orthod 29:430–436. https://doi.org/10.1093/ejo/cjm037

    Article  PubMed  Google Scholar 

  46. Balut N, Klapper L, Sandrik J, Bowman D (1992) Variations in bracket placement in the preadjusted orthodontic appliance. Am J Orthod Dentofacial Orthop 102:62–67. https://doi.org/10.1016/0889-5406(92)70015-3

    Article  PubMed  CAS  Google Scholar 

  47. El-Timamy AM, El-Sharaby FA, Eid FH, Mostafa YA (2016) Three-dimensional imaging for indirect-direct bonding. Am J Orthod Dentofacial Orthop 149:928–931. https://doi.org/10.1016/j.ajodo.2015.12.009

    Article  PubMed  Google Scholar 

  48. Andrews LF (1972) The six keys to normal occlusion. Am J Orthod 62:296–309. https://doi.org/10.1016/s0002-9416(72)90268-0

    Article  PubMed  CAS  Google Scholar 

  49. Silverman E, Cohen M, Gianelly AA, Dietz VS (1972) A universal direct bonding system for both metal and plastic brackets. Am J Orthod 62:236–244. https://doi.org/10.1016/s0002-9416(72)90264-3

    Article  PubMed  CAS  Google Scholar 

  50. Zachrisson BU, Brobakken BO (1978) Clinical comparison of direct versus indirect bonding with different bracket types and adhesives. Am J Orthod 74:62–78. https://doi.org/10.1016/0002-9416(78)90046-5

    Article  PubMed  CAS  Google Scholar 

  51. Nichols DA, Gardner G, Carballeyra AD (2013) Reproducibility of bracket positioning in the indirect bonding technique. Am J Orthod Dentofacial Orthop 144:770–776. https://doi.org/10.1016/j.ajodo.2013.04.023

    Article  PubMed  Google Scholar 

  52. Xie X, Niu J, Liu X, Chen Z, Tang S, Yu S (2021) A survey on incorporating domain knowledge into deep learning for medical image analysis. Med Image Anal 69:101985. https://doi.org/10.1016/j.media.2021.101985

    Article  PubMed  Google Scholar 

  53. Hodge TM, Dhopatkar AA, Rock WP, Spary DJ (2004) A randomized clinical trial comparing the accuracy of direct versus indirect bracket placement. J Orthod 31:132–137. https://doi.org/10.1179/146531204225020427

    Article  PubMed  CAS  Google Scholar 

  54. Littlewood SJ, Millett DT, Doubleday B, Bearn DR, Worthington HV (2016) Retention procedures for stabilising tooth position after treatment with orthodontic braces. Cochrane Database Syst Rev 2016:Cd002283. https://doi.org/10.1002/14651858.CD002283.pub4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Science and Technology Commission of Shanghai Municipality [Grand numbers 19441906200 and 18441903600], Clinical Research Plan of SHDC [Grand number SHDC2020CR3009A], Shanghai Rising-Star Program [Grand number 19QA1405200], Innovative Research Team of High-Level Local Universities in Shanghai [Grand number SSMU-ZDCX20180902], Young Doctor Collaborative Innovation Team of Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine [Grand number QC2018-02], Innovative Research Team of High-Level Local Universities in Shanghai [SHSMU-ZLCX20212402] and the CSA Clinical Research Fund [CSA-O2020-04] for financial support. Cross Disciplinary Research Fund from Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine [JYJC202130].

Author information

Authors and Affiliations

Authors

Contributions

LR contributed to conceptualization, methodology, formal analysis, investigation, writing—original draft, and visualization. ZC contributed to validation, formal analysis, investigation, data curation, writing—review & editing, and visualization. CF contributed to conceptualization, methodology, validation, investigation, resources, and writing—review & editing.

YQ contributed to methodology, validation, resources, data curation, and visualization. FD contributed to methodology, software, writing—review & editing, and validation. ON contributed to investigation, and writing—review & editing. JY contributed to investigation and writing—review & editing. GW contributed to investigation and writing—review & editing. XL contributed to validation, writing—review & editing, and supervision. FQ contributed to validation, writing—review & editing, supervision, and project administration.

FB contributed to validation, writing—review & editing, supervision, and funding acquisition.

Corresponding authors

Correspondence to Lunguo Xia, Qiping Feng or Bing Fang.

Ethics declarations

Ethics approval

The study was approved by the Independent Ethics Committee of the Shanghai Ninth People’s Hospital affiliated twith Shanghai Jiao Tong University, School of Medicine (SH9H-2021-T360-1).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Conflict of interests

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ruomei Li and Cheng Zhu joint first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zhu, C., Chu, F. et al. Deep learning for virtual orthodontic bracket removal: tool establishment and application. Clin Oral Invest 28, 121 (2024). https://doi.org/10.1007/s00784-023-05440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-023-05440-1

Keywords

Navigation