Skip to main content

Advertisement

Log in

In vitro evaluation of a novel fluoride-coated clear aligner with antibacterial and enamel remineralization abilities

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Objective

To investigate the antibacterial and enamel remineralization performances as well as physicochemical properties and biocompatibility of a fluoride-coated clear aligner plastic (FCAP).

Materials and methods

FCAP and normal clear aligner plastic (CAP) was bought from the manufacturer (Angelalign Technology Inc, China). The FCAP was observed under scanning electron microscopy. Its element composition, resistance to separation, contact angle, and protein adhesion performance were characterized. Colony-forming unit (CFU) count and 3-(4,5)-dimethylthiazol(-z-y1)-3,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the antibacterial ability of Streptococcus mutans. Fluoride release-recharge patterns were obtained. Apatite formation was evaluated after immersing FCAP in artificial saliva. Enamel remineralization capability was evaluated in the demineralization model (immersing samples in demineralization solution for 36 h) and pH cycling model (immersing samples in demineralization solution and remineralization solution in turns for 14 days). Cell Counting Kit-8 (CCK-8) and live/dead cell staining kits were used for cytotoxicity assay.

Results

The FCAP showed uniformly distributed fluoride and did not compromise protein adhesion performance. CFU count (5.47 ± 0.55 for CAP, 3.63 ± 0.38 for FCAP) and MTT assay (0.41 ± 0.025 for CAP, 0.28 ± 0.038) indicated that the FCAP had stronger antibacterial activity compared with normal CAP (P < 0.05 for both evaluations). The FCAP could release fluoride continuously for 14 days and could be recharged after immersing in NaF solution. The FCAP could induce the formation of hydroxyapatite in artificial saliva and could reduce the microhardness decrease, color change, and mineral loss of enamels in both two models (P < 0.05 for all evaluations). CCK-8 and live/dead cell staining analyses showed that the coating did not compromise the biocompatibility of the clear aligner (P > 0.05 for CCK-8 evaluation).

Conclusions

The FCAP had antibacterial, fluoride recharge, and enamel remineralization abilities while it did not compromise physicochemical properties and biocompatibility.

Clinical relevance

The FCAP has the potential to prevent enamel demineralization during clear aligner treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Proffit WR, Fields HW, Larson Be, Sarver DM (2018) Contemporary orthodontics. Sixth ed. Mosby, Saint Louis

  2. Weir T (2017) Clear aligners in orthodontic treatment. Aust Dent J 62(Suppl 1):58–62. https://doi.org/10.1111/adj.12480

    Article  PubMed  Google Scholar 

  3. Schaefer I, Braumann B (2010) Halitosis, Oral health and quality of life during treatment with Invisalign(®) and the effect of a low-dose chlorhexidine solution. J Orofac Orthop 71:430–441. https://doi.org/10.1007/s00056-010-1040-6

    Article  PubMed  Google Scholar 

  4. Fujiyama K, Honjo T, Suzuki M, Matsuoka S, Deguchi T (2014) Analysis of pain level in cases treated with Invisalign aligner: comparison with fixed edgewise appliance therapy. Prog Orthod 15:64. https://doi.org/10.1186/s40510-014-0064-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM (2009) Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Orthop 135:276.e1–12. https://doi.org/10.1016/j.ajodo.2008.09.020. (discussion 276-277)

    Article  PubMed  Google Scholar 

  6. Buschang PH, Shaw SG, Ross M, Crosby D, Campbell PM (2014) Comparative time efficiency of aligner therapy and conventional edgewise braces. Angle Orthod 84:391–396. https://doi.org/10.2319/062113-466

    Article  PubMed  Google Scholar 

  7. Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL (2015) Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod 85:881–889. https://doi.org/10.2319/061614-436.1

    Article  PubMed  Google Scholar 

  8. Fang D, Li F, Zhang Y, Bai Y, Wu BM (2020) Changes in mechanical properties, surface morphology, structure, and composition of Invisalign material in the oral environment. Am J Orthod Dentofacial Orthop 157:745–753. https://doi.org/10.1016/j.ajodo.2019.05.023

    Article  PubMed  Google Scholar 

  9. Moshiri M, Eckhart JE, McShane P, German DS (2013) Consequences of poor oral hygiene during aligner therapy. J Clin Orthod 47:494–498

    PubMed  Google Scholar 

  10. Julien KC, Buschang PH, Campbell PM (2013) Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod 83:641–647. https://doi.org/10.2319/071712-584.1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lucchese A, Gherlone E (2013) Prevalence of white-spot lesions before and during orthodontic treatment with fixed appliances. Eur J Orthod 35:664–668. https://doi.org/10.1093/ejo/cjs070

    Article  PubMed  Google Scholar 

  12. Wang Q, Ma JB, Wang B, Zhang X, Yin YL, Bai H (2019) Alterations of the oral microbiome in patients treated with the Invisalign system or with fixed appliances. Am J Orthod Dentofacial Orthop 156:633–640. https://doi.org/10.1016/j.ajodo.2018.11.017

    Article  PubMed  Google Scholar 

  13. Sifakakis I, Papaioannou W, Papadimitriou A, Kloukos D, Papageorgiou SN, Eliades T (2018) Salivary levels of cariogenic bacterial species during orthodontic treatment with thermoplastic aligners or fixed appliances: a prospective cohort study. Prog Orthod 19:25. https://doi.org/10.1186/s40510-018-0230-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Albhaisi Z, Al-Khateeb SN, Abu Alhaija ES (2020) Enamel demineralization during clear aligner orthodontic treatment compared with fixed appliance therapy, evaluated with quantitative light-induced fluorescence: a randomized clinical trial. Am J Orthod Dentofacial Orthop 157:594–601. https://doi.org/10.1016/j.ajodo.2020.01.004

    Article  PubMed  Google Scholar 

  15. Borzabadi-Farahani A, Borzabadi E, Lynch E (2014) Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand 72:413–417. https://doi.org/10.3109/00016357.2013.859728

    Article  PubMed  Google Scholar 

  16. Bącela J, Łabowska MB, Detyna J, Zięty A, Michalak I (2020) Functional coatings for orthodontic archwires-a review. Materials (Basel) 13:3257. https://doi.org/10.3390/ma13153257

    Article  PubMed  Google Scholar 

  17. Liu Y, Zhang L, Niu LN, Yu T, Xu HHK, Weir MD, Oates TW, Tay FR, Chen JH (2018) Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J Dent 72:53–63. https://doi.org/10.1016/j.jdent.2018.03.004

    Article  PubMed  Google Scholar 

  18. Yu F, Dong Y, Yu HH, Lin PT, Zhang L, Sun X, Liu Y, Xia YN, Huang L, Chen JH (2017) Antibacterial activity and bonding ability of an orthodontic adhesive containing the antibacterial monomer 2-methacryloxylethyl hexadecyl methyl ammonium bromide. Sci Rep 7:41787. https://doi.org/10.1038/srep41787

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ali A, Ismail H, Amin K (2022) Effect of nanosilver mouthwash on prevention of white spot lesions in patients undergoing fixed orthodontic treatment - a randomized double-blind clinical trial. J Dent Sci 17:249–255. https://doi.org/10.1016/j.jds.2021.03.016

    Article  PubMed  Google Scholar 

  20. Bauer Faria TR, Furletti-Goes VF, Franzini CM, de Aro AA, de Andrade TAM, Sartoratto A, de Menezes CC (2021) Anti-inflammatory and antimicrobial effects of Zingiber officinale mouthwash on patients with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 159:21–29. https://doi.org/10.1016/j.ajodo.2019.10.025

    Article  PubMed  Google Scholar 

  21. Flynn LN, Julien K, Noureldin A, Buschang PH (2022) The efficacy of fluoride varnish vs a filled resin sealant for preventing white spot lesions during orthodontic treatment. Angle Orthod 92:204–212. https://doi.org/10.2319/052521-418.1

    Article  PubMed  Google Scholar 

  22. Poornima P, Krithikadatta J, Ponraj RR, Velmurugan N, Kishen A (2021) Biofilm formation following chitosan-based varnish or chlorhexidine-fluoride varnish application in patients undergoing fixed orthodontic treatment: a double blinded randomised controlled trial. BMC Oral Health 21:465. https://doi.org/10.1186/s12903-021-01805-8

    Article  PubMed Central  Google Scholar 

  23. Xie Y, Zhang M, Zhang W, Liu X, Zheng W, Jiang X (2020) Gold nanoclusters-coated orthodontic devices can inhibit the formation of Streptococcus mutans biofilm. ACS Biomater Sci Eng 6:1239–1246. https://doi.org/10.1021/acsbiomaterials.9b01647

    Article  PubMed  Google Scholar 

  24. Marquis RE (1995) Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol 41:955–964. https://doi.org/10.1139/m95-133

    Article  PubMed  Google Scholar 

  25. Rošin-Grget K, Peroš K, Sutej I, Bašić K (2013) The cariostatic mechanisms of fluoride. Acta Med Acad 42:179–188. https://doi.org/10.5644/ama2006-124.85

    Article  PubMed  Google Scholar 

  26. Margolis HC, Moreno EC (1990) Physicochemical perspectives on the cariostatic mechanisms of systemic and topical fluorides. J Dent Res 69:606–613. https://doi.org/10.1177/00220345900690S119. (discussion:634-636)

    Article  PubMed  Google Scholar 

  27. Zhang N, Melo MA, Chen C, Liu J, Weir MD, Bai Y, Xu HH (2015) Development of a multifunctional adhesive system for prevention of root caries and secondary caries. Dent Mater 31:1119–1131. https://doi.org/10.1016/j.dental.2015.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim Y, Son HH, Yi K, Ahn JS, Chang J (2016) Bleaching effects on color, chemical, and mechanical properties of white spot lesions. Oper Dent 41:318–326. https://doi.org/10.2341/15-015-L

    Article  PubMed  Google Scholar 

  29. Kim Y, Son HH, Yi K, Kim HY, Ahn J, Chang J (2013) The color change in artificial white spot lesions measured using a spectroradiometer. Clin Oral Investig 17:139–146. https://doi.org/10.1007/s00784-012-0680-x

    Article  PubMed  Google Scholar 

  30. Jansen EE, Meyer-Lueckel H, Esteves-Oliveira M, Wierichs RJ (2021) Do bleaching gels affect the stability of the masking and caries-arresting effects of caries infiltration-in vitro. Clin Oral Investig 25:4011–4021. https://doi.org/10.1007/s00784-020-03732-4

    Article  PubMed  Google Scholar 

  31. Hua F, Yan J, Zhao S, Yang H, He H (2020) In vitro remineralization of enamel white spot lesions with a carrier-based amorphous calcium phosphate delivery system. Clin Oral Investig 24:2079–2089. https://doi.org/10.1007/s00784-019-03073-x

    Article  PubMed  Google Scholar 

  32. Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH (2021) A novel dual-action antimicrobial peptide for caries management. J Dent 111:103729. https://doi.org/10.1016/j.jdent.2021.103729

    Article  PubMed  Google Scholar 

  33. Kohda N, Iijima M, Kawaguchi K, Toshima H, Muguruma T, Endo K, Mizoguchi I (2015) Inhibition of enamel demineralization and bond-strength properties of bioactive glass containing 4-META/MMA-TBB-based resin adhesive. Eur J Oral Sci 123:202–207. https://doi.org/10.1111/eos.12187

    Article  PubMed  Google Scholar 

  34. Zhu Y, Yan J, Mujtaba BM, Li Y, Wei H, Huang S (2021) The dual anti-caries effect of carboxymethyl chitosan nanogel loaded with chimeric lysin ClyR and amorphous calcium phosphate. Eur J Oral Sci 129:e12784. https://doi.org/10.1111/eos.12784

    Article  PubMed  Google Scholar 

  35. Hua F, Yan J, Zhao S, Yang H, He H (2019) In vitro remineralization of enamel white spot lesions with a carrier-based amorphous calcium phosphate delivery system. Clin Oral Investig 24:2079–2089. https://doi.org/10.1007/s00784-019-03073-x

    Article  PubMed  Google Scholar 

  36. Zhang J, Boyes V, Festy F, Lynch RJM, Watson TF, Banerjee A (2018) In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan. Dent Mater 34:1154–1167. https://doi.org/10.1016/j.dental.2018.04.010

    Article  PubMed  Google Scholar 

  37. Azaripour A, Weusmann J, Mahmoodi B, Peppas D, Gerhold-Ay A, Van Noorden CJ, Willershausen B (2015) Braces versus Invisalign®: gingival parameters and patients’ satisfaction during treatment: a cross-sectional study. BMC Oral Health 15:69. https://doi.org/10.1186/s12903-015-0060-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Flores-Mir C, Brandelli J, Pacheco-Pereira C (2018) Patient satisfaction and quality of life status after 2 treatment modalities: Invisalign and conventional fixed appliances. Am J Orthod Dentofacial Orthop 154:639–644. https://doi.org/10.1016/j.ajodo.2018.01.013

    Article  PubMed  Google Scholar 

  39. Abbate GM, Caria MP, Montanari P, Mannu C, Orrù G, Caprioglio A, Levrini L (2015) Periodontal health in teenagers treated with removable aligners and fixed orthodontic appliances. J Orofac Orthop 76:240–250. https://doi.org/10.1007/s00056-015-0285-5

    Article  PubMed  Google Scholar 

  40. Kotz JC, Treichel PM, Moran MJ (2011) Chemistry and chemical reactivity, 8th edn. CENGAGE Learning, Boston

    Google Scholar 

  41. Lombardo L, Martini M, Cervinara F, Spedicato GA, Oliverio T, Siciliani G (2017) Comparative SEM analysis of nine F22 aligner cleaning strategies. Prog Orthod 18:26. https://doi.org/10.1186/s40510-017-0178-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steinberg D, Eyal S (2004) Initial biofilm formation of Streptococcus sobrinus on various orthodontics appliances. J Oral Rehabil 31:1041–1045. https://doi.org/10.1111/j.1365-2842.2004.01350.x

    Article  PubMed  Google Scholar 

  43. Ambarita AC, Mulyati S, Arahman N, Bilad MR, Shamsuddin N, Ismail NM (2021) Improvement of properties and performances of polyethersulfone ultrafiltration membrane by blending with bio-based dragonbloodin resin. Polymers (Basel) 13:4436. https://doi.org/10.3390/polym13244436

    Article  PubMed  Google Scholar 

  44. Lee JE, Kim HK (2019) Self-cleanable, waterproof, transparent, and flexible Ag networks covered by hydrophobic polytetrafluoroethylene for multi-functional flexible thin film heaters. Sci Rep 9:16723. https://doi.org/10.1038/s41598-019-53243-w

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun F, Hung HC, Yan W, Wu K, Shimchuk AA, Gray SD, He W, Huang X, Zhang H (2021) Inhibition of oral biofilm formation by zwitterionic nonfouling coating. J Biomed Mater Res B Appl Biomater 109:1418–1425. https://doi.org/10.1002/jbm.b.34801

    Article  PubMed  Google Scholar 

  46. Moussa DG, Siqueira WL (2021) Bioinspired caries preventive strategy via customizable pellicles of saliva-derived protein/peptide constructs. Sci Rep 11:17007. https://doi.org/10.1038/s41598-021-96622-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen X, Zhao S, Chu S, Liu S, Yu M, Li J, Gao F, Liu Y (2022) A novel sustained release fluoride strip based poly(propylene carbonate) for preventing caries. Eur J Pharm Sci 171:106128. https://doi.org/10.1016/j.ejps.2022.106128

    Article  PubMed  Google Scholar 

  48. Qi C, Peng X, Yuan S, Zhang M, Xu X, Cheng X (2022) Evaluation of the antibacterial and anti-inflammatory effects of a natural products-containing toothpaste. Front Cell Infect Microbiol 12:827643. https://doi.org/10.3389/fcimb.2022.827643

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sreenivasan PK, Haraszthy VI, Rayela CC (2021) Antimicrobial effects in oral microenvironments by a novel herbal toothpaste. Contemp Clin Trials Commun 21:100680. https://doi.org/10.1016/j.conctc.2020.100680

    Article  PubMed  Google Scholar 

  50. Arweiler NB, Müller-Breitenkamp F, Heumann C, Laugisch O, Auschill TM, Action A (2021) Substantivity and anti-plaque effect of different toothpaste slurries - a randomised controlled trial. Oral Health Prev Dent 19:529–536. https://doi.org/10.3290/j.ohpd.b2182977

    Article  PubMed  Google Scholar 

  51. Lebioda L, Zhang E, Lewinski K, Brewer JM (1993) Fluoride inhibition of yeast enolase: crystal structure of the enolase-Mg(2+)-F(-)-Pi complex at 2.6 A resolution. Proteins 16:219–225. https://doi.org/10.1002/prot.340160302

    Article  PubMed  Google Scholar 

  52. Thibodeau EA, Keefe TF (1990) pH-dependent fluoride inhibition of catalase activity. Oral Microbiol Immunol 5:328–331. https://doi.org/10.1111/j.1399-302x.1990.tb00435.x

    Article  PubMed  Google Scholar 

  53. Baykov AA, Dubnova EB, Bakuleva NP, Evtushenko OA, Zhen RG, Rea PA (1993) Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett 327:199–202. https://doi.org/10.1016/0014-5793(93)80169-u

    Article  PubMed  Google Scholar 

  54. Thibodeau EA, Ford CM (1991) Chain formation and de-chaining in Streptococcus sobrinus SL-1. Oral Microbiol Immunol 6:313–315. https://doi.org/10.1111/j.1399-302x.1991.tb00500.x

    Article  PubMed  Google Scholar 

  55. Belli WA, Buckley DH, Marquis RE (1995) Weak acid effects and fluoride inhibition of glycolysis by Streptococcus mutans GS-5. Can J Microbiol 41:785–791. https://doi.org/10.1139/m95-108

    Article  PubMed  Google Scholar 

  56. Ahamad I, Bano F, Anwer R, Srivastava P, Kumar R, Fatma T (2021) Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front Microbiol 12:741493. https://doi.org/10.3389/fmicb.2021.741493

    Article  PubMed  Google Scholar 

  57. Zhang L, Weir MD, Chow LC, Antonucci JM, Chen J, Xu HH (2016) Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater 32:285–293. https://doi.org/10.1016/j.dental.2015.11.015

    Article  PubMed  Google Scholar 

  58. Yi J, Weir MD, Melo MAS, Li T, Lynch CD, Oates TW, Dai Q, Zhao Z, Xu HHK (2019) Novel rechargeable nano-CaF(2) orthodontic cement with high levels of long-term fluoride release. J Dent 90:103214. https://doi.org/10.1016/j.jdent.2019.103214

    Article  PubMed  Google Scholar 

  59. Al-Eesa NA, Johal A, Hill RG, Wong FSL (2018) Fluoride containing bioactive glass composite for orthodontic adhesives - apatite formation properties. Dent Mater 34:1127–1133. https://doi.org/10.1016/j.dental.2018.04.009

    Article  PubMed  Google Scholar 

  60. Tanaka T, Kobayashi T, Tamenori Y, Sakanaka A, Kuriki T, Amano A (2019) Phosphoryl oligosaccharides of calcium enhance mineral availability and fluorapatite formation. Arch Oral Biol 101:135–141. https://doi.org/10.1016/j.archoralbio.2019.03.018

    Article  PubMed  Google Scholar 

  61. Jay E, Rushton M, Grimes R (2012) Migration of fluorine in fluorapatite - a concerted mechanism. J Mater Chem 22:6097–6103. https://doi.org/10.1039/c2jm16235k

    Article  Google Scholar 

  62. Pajor K, Pajchel L, Kolmas J (2019) Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review. Materials (Basel) 12:2683. https://doi.org/10.3390/ma12172683

    Article  PubMed  Google Scholar 

  63. Ramadoss R, Padmanaban R, Subramanian B (2022) Role of bioglass in enamel remineralization: existing strategies and future prospects-a narrative review. J Biomed Mater Res B Appl Biomater 110:45–66. https://doi.org/10.1002/jbm.b.34904

    Article  PubMed  Google Scholar 

  64. Arifa MK, Ephraim R, Rajamani T (2019) Recent advances in dental hard tissue remineralization: a review of literature. Int J Clin Pediatr Dent 12:139–144. https://doi.org/10.5005/jp-journals-10005-1603

    Article  PubMed  PubMed Central  Google Scholar 

  65. Al-Nadawi M, Kravitz ND, Hansa I, Makki L, Ferguson DJ, Vaid NR (2021) Effect of clear aligner wear protocol on the efficacy of tooth movement. Angle Orthod 91:157–163. https://doi.org/10.2319/071520-630.1

    Article  PubMed  Google Scholar 

  66. Júnior NAN, Nunes GP, Gruba AS, Danelon M, da Silva L, de Farias Batista G, Briso ALF, Delbem ACB (2022) Evaluation of bleaching efficacy, microhardness, and trans-amelodentinal diffusion of a novel bleaching agent for an in-office technique containing hexametaphosphate and fluoride. Clin Oral Investig 26:5071–5078. https://doi.org/10.1007/s00784-022-04480-3

    Article  PubMed  Google Scholar 

  67. Mohanty B, Dadlani D, Mahoney D, Mann AB (2013) Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy. Caries Res 47:27–33. https://doi.org/10.1159/000342432

    Article  PubMed  Google Scholar 

  68. Xu Y, Xepapadeas AB, Koos B, Geis-Gerstorfer J, Li P, Spintzyk S (2021) Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dent Mater 37:e314-327. https://doi.org/10.1016/j.dental.2021.01.016

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81901044), and the Chinese Stomatological Association COS Basic Research Fund (No. COS-B2021-08).

Author information

Authors and Affiliations

Authors

Contributions

Yan Jiarong: conceptualization, methodology, formal analysis and writing — original draft; Cao Lingyun: visualization, resources; Luo Ting: visualization, investigation; Qin Danchen: visualization, investigation; Hua Fang: supervision, conceptualization, writing — review and editing; He Hong: supervision, conceptualization, writing — review and editing.

Corresponding authors

Correspondence to Fang Hua or Hong He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Cao, L., Luo, T. et al. In vitro evaluation of a novel fluoride-coated clear aligner with antibacterial and enamel remineralization abilities. Clin Oral Invest 27, 6027–6042 (2023). https://doi.org/10.1007/s00784-023-05216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05216-7

Keywords

Navigation