Skip to main content

Advertisement

Log in

Mechanical loading influences the effects of bisphosphonates on human periodontal ligament fibroblasts

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

There is increasing evidence that bisphosphonates affect orthodontic tooth movement. The object of the study was to investigate the changes produced by tensile strain on human periodontal ligament fibroblasts (HPdLFs) treated with clodronate or zoledronate.

Materials and methods

HPdLF were cultured with 5 and 50 μM clodronate or zoledronate for 48 h and applied to tensile strain (TS) (5 and 10 %) for 12 h in vitro. Viability was verified by MTT assay and apoptosis rate via caspase 3/7 assay. Gene expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) was investigated using real-time PCR. OPG was also analyzed by ELISA and RANKL by immunocytochemical staining.

Results

Zoledronate (50 μM) reduced the viability of HPdLF (76 vs 100 %) and combined with 5 % TS to 53 %. TS of 10 % and clodronate reduced viability to 79 % with increased caspase 3/7 activity. Clodronate (5 μM) led to a slight increase of OPG gene expression, zoledronate (5 μM) to a slight decrease. Combined with 5 % TS, both increased OPG gene expression (2–3-fold) and OPG synthesis. Zoledronate increased gene expression of RANKL (4-fold). Combined with 5 % of TS, this increase was abolished. TS of 10 % in combination amplified increase of RANKL ending up with a 9-fold gene expression by clodronate and high RANKL protein synthesis.

Conclusions

This study shows for the first time that mechanical loading alters the effects of bisphosphonates on viability, apoptosis rate, and OPG/RANKL system of HPdLF dependent on the applied strength. Low forces and bisphosphonates increase factors for bone apposition, whereas high forces combined with bisphosphonates stimulate osteoclastogenesis.

Clinical relevance

Mechanical loading of periodontal ligament with high strengths should be avoided during bisphosphonate therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tyrovola JB, Spyropoulos MN (2001) Effects of drugs and systemic factors on orthodontic treatment. Quintessence Int 32(5):365–371

    PubMed  Google Scholar 

  2. Krishnan V, Davidovitch Z (2006) The effect of drugs on orthodontic tooth movement. Orthod Craniofacial Res 9(4):163–171

    Article  Google Scholar 

  3. Chaison ET, Liu X, Tuncay OC (2011) The quality of treatment in the adult orthodontic patient as judged by orthodontists and measured by the Objective Grading System. Am J Orthod Dentofac Orthop 139(4 Suppl):S69–S75

    Article  Google Scholar 

  4. Deeks ED, Perry CM (2008) Zoledronic acid: a review of its use in the treatment of osteoporosis. Drugs Aging 25(11):963–986

    Article  PubMed  Google Scholar 

  5. Sirisoontorn I, Hotokezaka H, Hashimoto M, Gonzales C, Luppanapornlarp S, Darendeliler MA, Yoshida N (2012) Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid. Am J Orthod Dentofac Orthop 141(5):563–573

    Article  Google Scholar 

  6. Krieger E, d'Hoedt B, Scheller H, Jacobs C, Walter C, Wehrbein H (2013) Orthodontic treatment of patients medicated with bisphosphonates-a clinical case report. J Orofac Orthop 74(1):28–39

    Article  PubMed  Google Scholar 

  7. Krieger E, Jacobs C, Walter C, Wehrbein H (2013) Current state of orthodontic patients under bisphosphonate therapy. Head Face Med 9:10

    Article  PubMed Central  PubMed  Google Scholar 

  8. Flanagan AM, Chambers TJ (1991) Inhibition of bone resorption by bisphosphonates: interactions between bisphosphonates, osteoclasts, and bone. Calcif Tissue Int 49(6):407–415

    Article  PubMed  Google Scholar 

  9. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88(12 Suppl):2961–2978

    Article  PubMed  Google Scholar 

  10. Green JR (2004) Bisphosphonates: preclinical review. Oncologist 9(Suppl 4):3–13

    Article  PubMed  Google Scholar 

  11. Koch FP, Wunsch A, Merkel C, Ziebart T, Pabst A, Yekta SS, Blessmann M, Smeets R (2011) The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro. Head Face Med 7(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  12. Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C (2012) The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes—in vitro study. Clin Oral Investig 16(1):87–93

    Article  PubMed  Google Scholar 

  13. Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35–41

    Article  PubMed  Google Scholar 

  14. Walter C, Pabst A, Ziebart T, Klein M, Al-Nawas B (2011) Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis 17(2):194–199

    Article  PubMed  Google Scholar 

  15. Hassell TM (1993) Tissues and cells of the periodontium. Periodontol 2000(3):9–38

    Article  Google Scholar 

  16. Proff P, Romer P (2009) The molecular mechanism behind bone remodelling: a review. Clin Oral Investig 13(4):355–362

    Article  PubMed  Google Scholar 

  17. Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88(7):597–608

    Article  PubMed  Google Scholar 

  18. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 129(4):469 e461–469 e432

    Article  Google Scholar 

  19. Mabuchi R, Matsuzaka K, Shimono M (2002) Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. J Periodontal Res 37(2):118–124

    Article  PubMed  Google Scholar 

  20. Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28(3):221–240

    Article  PubMed  Google Scholar 

  21. Adachi H, Igarashi K, Mitani H, Shinoda H (1994) Effects of topical administration of a bisphosphonate (risedronate) on orthodontic tooth movements in rats. J Dent Res 73(8):1478–1486

    PubMed  Google Scholar 

  22. Alatli I, Hellsing E, Hammarstrom L (1996) Orthodontically induced root resorption in rat molars after 1-hydroxyethylidene-1,1-bisphosphonate injection. Acta Odontol Scand 54(2):102–108

    Article  PubMed  Google Scholar 

  23. Igarashi K, Adachi H, Mitani H, Shinoda H (1996) Inhibitory effect of the topical administration of a bisphosphonate (risedronate) on root resorption incident to orthodontic tooth movement in rats. J Dent Res 75(9):1644–1649

    Article  PubMed  Google Scholar 

  24. Kaipatur NR, Wu Y, Adeeb S, Stevenson TR, Major PW, Doschak MR (2013) Impact of bisphosphonate drug burden in alveolar bone during orthodontic tooth movement in a rat model: a pilot study. Am J Orthod Dentofac Orthop 144(4):557–567

    Article  Google Scholar 

  25. Karras JC, Miller JR, Hodges JS, Beyer JP, Larson BE (2009) Effect of alendronate on orthodontic tooth movement in rats. Am J Orthod Dentofac Orthop 136(6):843–847

    Article  Google Scholar 

  26. Liu L, Igarashi K, Haruyama N, Saeki S, Shinoda H, Mitani H (2004) Effects of local administration of clodronate on orthodontic tooth movement and root resorption in rats. Eur J Orthod 26(5):469–473

    Article  PubMed  Google Scholar 

  27. Ortega AJ, Campbell PM, Hinton R, Naidu A, Buschang PH (2012) Local application of zoledronate for maximum anchorage during space closure. Am J Orthod Dentofac Orthop 142(6):780–791

    Article  Google Scholar 

  28. Lossdorfer S, Gotz W, Jager A (2011) PTH(1-34)-induced changes in RANKL and OPG expression by human PDL cells modify osteoclast biology in a co-culture model with RAW 264.7 cells. Clin Oral Investig 15(6):941–952

    Article  PubMed  Google Scholar 

  29. Tsuji K, Uno K, Zhang GX, Tamura M (2004) Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22(2):94–103

    Article  PubMed  Google Scholar 

  30. Giannopoulou C, Cimasoni G (1996) Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75(3):895–902

    Article  PubMed  Google Scholar 

  31. Liu L, Igarashi K, Kanzaki H, Chiba M, Shinoda H, Mitani H (2006) Clodronate inhibits PGE(2) production in compressed periodontal ligament cells. J Dent Res 85(8):757–760

    Article  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  Google Scholar 

  33. Grunheid T, Zentner A (2005) Extracellular matrix synthesis, proliferation and death in mechanically stimulated human gingival fibroblasts in vitro. Clin Oral Investig 9(2):124–130

    Article  PubMed  Google Scholar 

  34. Jacobs C, Grimm S, Ziebart T, Walter C, Wehrbein H (2013) Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Arch Oral Biol 58(7):896–904

    Article  PubMed  Google Scholar 

  35. Yamamoto E, Kogawa D, Tokura S, Hayashi K (2005) Effects of the frequency and duration of cyclic stress on the mechanical properties of cultured collagen fascicles from the rabbit patellar tendon. J Biomech Eng 127(7):1168–1175

    Article  PubMed  Google Scholar 

  36. Koch FP, Merkel C, Ziebart T, Smeets R, Walter C, Al-Nawas B (2012) Influence of bisphosphonates on the osteoblast RANKL and OPG gene expression in vitro. Clin Oral Investig 16(1):79–86

    Article  PubMed  Google Scholar 

  37. Li L, Han M, Li S, Wang L, Xu Y (2013) Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway. DNA Cell Biol 32:488–497

    Article  PubMed Central  PubMed  Google Scholar 

  38. Tang N, Zhao Z, Zhang L, Yu Q, Li J, Xu Z, Li X (2012) Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci 8(3):422–430

    Article  PubMed Central  PubMed  Google Scholar 

  39. Diercke K, Kohl A, Lux CJ, Erber R (2011) Strain-dependent up-regulation of ephrin-B2 protein in periodontal ligament fibroblasts contributes to osteogenesis during tooth movement. J Biol Chem 286(43):37651–37664

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lossdorfer S, Yildiz F, Gotz W, Kheralla Y, Jager A (2010) Anabolic effect of intermittent PTH(1-34) on the local microenvironment during the late phase of periodontal repair in a rat model of tooth root resorption. Clin Oral Investig 14(1):89–98

    Article  PubMed  Google Scholar 

  41. Romer P, Kostler J, Koretsi V, Proff P (2013) Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells. Clin Oral Investig 17(9):2041–2048

    Article  PubMed  Google Scholar 

  42. Gilbert JA, Weinhold PS, Banes AJ, Link GW, Jones GL (1994) Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J Biomech 27(9):1169–1177

    Article  PubMed  Google Scholar 

  43. Stadelmann VA, Bonnet N, Pioletti DP (2011) Combined effects of zoledronate and mechanical stimulation on bone adaptation in an axially loaded mouse tibia. Clin Biomech (Bristol, Avon) 26(1):101–105

    Article  Google Scholar 

  44. Braith RW, Conner JA, Fulton MN, Lisor CF, Casey DP, Howe KS, Baz MA (2007) Comparison of alendronate vs alendronate plus mechanical loading as prophylaxis for osteoporosis in lung transplant recipients: a pilot study. J Heart Lung Transplant 26(2):132–137

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jutta Goldschmidt, Jutta Bühler, Ute Zerfass, and Lotte Groothusen for their assistance in the laboratory and Kathy Taylor for orthographic correction of the article.

Conflict of interest

The authors declare that no competing financial interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collin Jacobs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, C., Walter, C., Ziebart, T. et al. Mechanical loading influences the effects of bisphosphonates on human periodontal ligament fibroblasts. Clin Oral Invest 19, 699–708 (2015). https://doi.org/10.1007/s00784-014-1284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1284-4

Keywords

Navigation