Skip to main content
Log in

Influence of bisphosphonates on the osteoblast RANKL and OPG gene expression in vitro

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Bisphosphonates are widely used in the clinical treatment of bone diseases with increased bone resorption. In terms of side effects, they are widely known to be associated with osteonecrosis of the jaw (BONJ). The objective of this study was to evaluate the effect of bisphosphonates on the gene expression of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in vitro. Nitrogen-containing and non-nitrogen containing bisphosphonates have been compared. Human osteoblasts were stimulated with zoledronate and ibandronate at concentrations of 5 × 10−5 M, 5 × 10−6 M, and 5 × 10−7 M over the experimental period of 14 days. Furthermore, the hOB cell lines were stimulated by clodronate at concentrations of 5 × 10−3 M, 5 × 10−5 M, and 5 × 10−6 M. At each point in time, the gene expression levels of RANKL and OPG were quantified by real-time RT-PCR. The results showed a moderate enhancement of OPG gene expression whereas RANKL gene expression was strongly increased by nitrogen-containing bisphosphonates reaching a maximum after 14 days at high concentrations of 5 × 10−5 M. Lower concentrations did not enhance the RANKL and OPG expression considerably. The non-nitrogen-containing bisphosphonate clodronate, however, effected OPG and RANKL gene expression much less, even at higher concentrations of 5 × 10−3 M. The above-mentioned data suggest an enhanced RANKL/OPG gene expression after stimulation by bisphosphonates. Interestingly, clodronate might have little influence on osteoblast/osteoclast interaction with respect to OPG and RANKL gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Russell RG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25:97–106

    Article  PubMed  Google Scholar 

  2. Rustemeyer J, Bremerich A (2010) Bisphosphonate-associated osteonecrosis of the jaw: what do we currently know? A survey of knowledge given in the recent literature. Clin Oral Investig 14:59–64

    Article  PubMed  Google Scholar 

  3. Bamias A, Kastritis E, Bamia C, Moulopoulos LA, Melakopoulos I, Bozas G, Koutsoukou V, Gika D, Anagnostopoulos A, Papadimitriou C, Terpos E, Dimopoulos MA (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23:8580–8587

    Article  PubMed  Google Scholar 

  4. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575

    Article  PubMed  Google Scholar 

  5. Walter C, Al-Nawas B, du Bois A, Buch L, Harter P, Grotz KA (2009) Incidence of bisphosphonate-associated osteonecrosis of the jaws in breast cancer patients. Cancer 115:1631–1637

    Article  PubMed  Google Scholar 

  6. Walter C, Al-Nawas B, Grotz KA, Thomas C, Thuroff JW, Zinser V, Gamm H, Beck J, Wagner W (2008) Prevalence and risk factors of bisphosphonate-associated osteonecrosis of the jaw in prostate cancer patients with advanced disease treated with zoledronate. Eur Urol 54:1066–1072

    Article  PubMed  Google Scholar 

  7. Walter C, Grotz KA, Kunkel M, Al-Nawas B (2007) Prevalence of bisphosphonate associated osteonecrosis of the jaw within the field of osteonecrosis. Support Care Cancer 15:197–202

    Article  PubMed  Google Scholar 

  8. Abu-Id MH, Acil Y, Gottschalk J, Kreusch T (2006) Bisphosphonate-associated osteonecrosis of the jaw. Mund Kiefer Gesichtschir 10:73–81

    Article  PubMed  Google Scholar 

  9. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62:527–534

    Article  PubMed  Google Scholar 

  10. Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14:35–41

    Article  PubMed  Google Scholar 

  11. Glatt M, Pataki A, Evans GP, Hornby SB, Green JR (2004) Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. Osteoporos Int 15:707–715

    Article  PubMed  Google Scholar 

  12. Hornby SB, Evans GP, Hornby SL, Pataki A, Glatt M, Green JR (2003) Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int 72:519–527

    Article  PubMed  Google Scholar 

  13. Pataki A, Muller K, Green JR, Ma YF, Li QN, Jee WS (1997) Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. Anat Rec 249:458–468

    Article  PubMed  Google Scholar 

  14. Balena R, Toolan BC, Shea M, Markatos A, Myers ER, Lee SC, Opas EE, Seedor JG, Klein H, Frankenfield D et al (1993) The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 92:2577–2586

    Article  PubMed  Google Scholar 

  15. Elad S, Gomori MJ, Ben-Ami N, Friedlander-Barenboim S, Regev E, Lazarovici TS, Yarom N (2010) Bisphosphonate-related osteonecrosis of the jaw: clinical correlations with computerized tomography presentation. Clin Oral Investig 14:43–50

    Article  PubMed  Google Scholar 

  16. Bruzzaniti A, Baron R (2006) Molecular regulation of osteoclast activity. Rev Endocr Metab Disord 7:123–139

    Article  PubMed  Google Scholar 

  17. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264

    Article  PubMed  Google Scholar 

  18. Lin JM, Callon KE, Lin CQ, Bava U, Zheng MH, Reid IR, Cornish J (2007) Alteration of bone cell function by RANKL and OPG in different in vitro models. Eur J Clin Invest 37:407–415

    Article  PubMed  Google Scholar 

  19. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337

    Article  PubMed  Google Scholar 

  20. Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 145:527–538

    Article  PubMed  Google Scholar 

  21. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  Google Scholar 

  22. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034

  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  Google Scholar 

  24. Mackie PS, Fisher JL, Zhou H, Choong PF (2001) Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer 84:951–958

    Article  PubMed  Google Scholar 

  25. Selander KS, Monkkonen J, Karhukorpi EK, Harkonen P, Hannuniemi R, Vaananen HK (1996) Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol 50:1127–1138

    PubMed  Google Scholar 

  26. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    Article  PubMed  Google Scholar 

  27. Hiroi-Furuya E, Kameda T, Hiura K, Mano H, Miyazawa K, Nakamaru Y, Watanabe-Mano M, Okuda N, Shimada J, Yamamoto Y, Hakeda Y, Kumegawa M (1999) Etidronate (EHDP) inhibits osteoclastic-bone resorption, promotes apoptosis and disrupts actin rings in isolate-mature osteoclasts. Calcif Tissue Int 64:219–223

    Article  PubMed  Google Scholar 

  28. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E, Rodan GA (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 88:2095–2105

    Article  PubMed  Google Scholar 

  29. Hansen T, Kirkpatrick CJ, Walter C, Kunkel M (2006) Increased numbers of osteoclasts expressing cysteine proteinase cathepsin K in patients with infected osteoradionecrosis and bisphosphonate-associated osteonecrosis—a paradoxical observation? Virchows Arch 449:448–454

    Article  PubMed  Google Scholar 

  30. Polyzos SA, Anastasilakis AD, Efstathiadou Z, Kita M, Litsas I, Avramidis A, Arsos G, Moralidis E, Gerou S, Pavlidou V, Papatheodorou A, Terpos E (2009) The effect of zoledronic acid on serum dickkopf-1, osteoprotegerin, and RANKL in patients with Paget’s disease of bone. Horm Metab Res 41:846–850

    Article  PubMed  Google Scholar 

  31. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  PubMed  Google Scholar 

  32. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88:2961–2978

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Peter Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, F.P., Merkel, C., Ziebart, T. et al. Influence of bisphosphonates on the osteoblast RANKL and OPG gene expression in vitro. Clin Oral Invest 16, 79–86 (2012). https://doi.org/10.1007/s00784-010-0477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-010-0477-8

Keywords

Navigation