Skip to main content

Advertisement

Log in

Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFβ1

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Bioresorbable collagen membranes are routinely utilized in guided bone regeneration to selectively direct the growth and repopulation of bone cells in areas of insufficient volume. However, the exact nature by which alveolar osteoblasts react to barrier membranes as well as the effects following the addition of growth factors to the membranes are still poorly understood. The objective of the present study was therefore to investigate the effect of a bioresorbable collagen membrane soak-loaded in growth factors bone morphogenetic protein 2 (BMP2) or transforming growth factor β1 (TGFβ1) on osteoblast adhesion, proliferation, and differentiation.

Material and methods

Prior to experimental seeding, membranes were soaked in either BMP2 or TGFβ1 at a concentration of 10 ng/ml for 5 min.

Results

Human osteoblasts adhered to all soak-loaded membranes as assessed by scanning electron microscopy. Growth factors BMP2 and TGFβ1 increased osteoblast proliferation at 3 or 5 days post-seeding when compared to control collagen membranes. Analysis of real-time PCR revealed that administration of BMP2 increased osteoblast differentiation markers such as osterix, collagen I, and osteocalcin. BMP2 also increased mineralization of primary osteoblasts as demonstrated by alizarin red staining when compared to control and TGFβ1 soak-loaded membranes.

Conclusion

The combination of a collagen barrier membrane with growth factors TGFβ1 and BMP2 significantly influenced adhesion, proliferation, and differentiation of primary human osteoblasts.

Clinical relevance

The described in vitro effects following the combination of collagen barrier membranes with growth factors TGFβ1 and BMP2 provide further biologic support for the clinical application of this treatment strategy in guided bone regeneration procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karring T, Nyman S, Gottlow J, Laurell L (1993) Development of the biological concept of guided tissue regeneration—animal and human studies. Periodontol 2000 1:26–35

    Article  Google Scholar 

  2. Bornstein MM, Bosshardt D, Buser D (2007) Effect of two different bioabsorbable collagen membranes on guided bone regeneration: a comparative histomorphometric study in the dog mandible. J Periodontol 78:1943–1953

    Article  PubMed  Google Scholar 

  3. Cortellini P, Pini Prato G, Tonetti MS (1996) Periodontal regeneration of human intrabony defects with bioresorbable membranes. A controlled clinical trial. J Periodontol 67:217–223

    Article  PubMed  Google Scholar 

  4. Yukna CN, Yukna RA (1996) Multi-center evaluation of bioabsorbable collagen membrane for guided tissue regeneration in human class II furcations. J Periodontol 67:650–657

    Article  PubMed  Google Scholar 

  5. Wang HL, O'Neal RB, Thomas CL, Shyr Y, MacNeil RL (1994) Evaluation of an absorbable collagen membrane in treating class II furcation defects. J Periodontol 65:1029–1036

    Article  PubMed  Google Scholar 

  6. Becker W, Becker BE, Mellonig J, Caffesse RG, Warrer K, Caton JG, Reid T (1996) A prospective multi-center study evaluating periodontal regeneration for class II furcation invasions and intrabony defects after treatment with a bioabsorbable barrier membrane: 1-year results. J Periodontol 67:641–649

    Article  PubMed  Google Scholar 

  7. Gkranias ND, Graziani F, Sculean A, Donos N (2012) Wound healing following regenerative procedures in furcation degree III defects: histomorphometric outcomes. Clin Oral Investig 16:239–249

    Article  PubMed  Google Scholar 

  8. Gottlow J, Nyman S, Karring T, Lindhe J (1984) New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 11:494–503

    Article  PubMed  Google Scholar 

  9. Nyman S, Lindhe J, Karring T, Rylander H (1982) New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9:290–296

    Article  PubMed  Google Scholar 

  10. Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224–230

    Article  PubMed  Google Scholar 

  11. Minuth WW, Sittinger M, Kloth S (1998) Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 291:1–11

    Article  PubMed  Google Scholar 

  12. Grinnell F (1978) Cellular adhesiveness and extracellular substrata. Int Rev Cytol 53:65–144

    Article  PubMed  Google Scholar 

  13. Machtei EE, Cho MI, Dunford R, Norderyd J, Zambon JJ, Genco RJ (1994) Clinical, microbiological, and histological factors which influence the success of regenerative periodontal therapy. J Periodontol 65:154–161

    Article  PubMed  Google Scholar 

  14. Camelo M, Nevins ML, Schenk RK, Simion M, Rasperini G, Lynch SE, Nevins M (1998) Clinical, radiographic, and histologic evaluation of human periodontal defects treated with Bio-Oss and Bio-Gide. Int J Periodont Restor Dent 18:321–331

    Google Scholar 

  15. Takata T, Wang HL, Miyauchi M (2001) Attachment, proliferation and differentiation of periodontal ligament cells on various guided tissue regeneration membranes. J Periodontal Res 36:322–327

    Article  PubMed  Google Scholar 

  16. Takata T, Wang HL, Miyauchi M (2001) Migration of osteoblastic cells on various guided bone regeneration membranes. Clin Oral Implants Res 12:332–338

    Article  PubMed  Google Scholar 

  17. Wang HL, Miyauchi M, Takata T (2002) Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodontal Res 37:340–344

    Article  PubMed  Google Scholar 

  18. Gottlow J (1993) Guided tissue regeneration using bioresorbable and non-resorbable devices: initial healing and long-term results. J Periodontol 64:1157–1165

    Article  PubMed  Google Scholar 

  19. Selvig KA, Kersten BG, Chamberlain AD, Wikesjo UM, Nilveus RE (1992) Regenerative surgery of intrabony periodontal defects using ePTFE barrier membranes: scanning electron microscopic evaluation of retrieved membranes versus clinical healing. J Periodontol 63:974–978

    Article  PubMed  Google Scholar 

  20. Nowzari H, Slots J (1995) Microbiologic and clinical study of polytetrafluoroethylene membranes for guided bone regeneration around implants. Int J Oral Maxillofac Implants 10:67–73

    PubMed  Google Scholar 

  21. Brunel G, Piantoni P, Elharar F, Benque E, Marin P, Zahedi S (1996) Regeneration of rat calvarial defects using a bioabsorbable membrane technique: influence of collagen cross-linking. J Periodontol 67:1342–1348

    Article  PubMed  Google Scholar 

  22. Bunyaratavej P, Wang HL (2001) Collagen membranes: a review. J Periodontol 72:215–229

    Article  PubMed  Google Scholar 

  23. Kodama T, Minabe M, Hori T, Watanabe Y (1989) The effect of various concentrations of collagen barrier on periodontal wound healing. J Periodontol 60:205–210

    Article  PubMed  Google Scholar 

  24. Minabe M, Kodama T, Kogou T, Tamura T, Hori T, Watanabe Y, Miyata T (1989) Different cross-linked types of collagen implanted in rat palatal gingiva. J Periodontol 60:35–43

    Article  PubMed  Google Scholar 

  25. Quteish D, Dolby AE (1992) The use of irradiated-crosslinked human collagen membrane in guided tissue regeneration. J Clin Periodontol 19:476–484

    Article  PubMed  Google Scholar 

  26. Zahedi S, Legrand R, Brunel G, Albert A, Dewe W, Coumans B, Bernard JP (1998) Evaluation of a diphenylphosphorylazide-crosslinked collagen membrane for guided bone regeneration in mandibular defects in rats. J Periodontol 69:1238–1246

    Article  PubMed  Google Scholar 

  27. Tatakis DN, Promsudthi A, Wikesjo UM (1999) Devices for periodontal regeneration. Periodontol 2000 19:59–73

    Article  PubMed  Google Scholar 

  28. Caffesse RG, Mota LF, Quinones CR, Morrison EC (1997) Clinical comparison of resorbable and non-resorbable barriers for guided periodontal tissue regeneration. J Clin Periodontol 24:747–752

    Article  PubMed  Google Scholar 

  29. Teparat T, Solt CW, Claman LJ, Beck FM (1998) Clinical comparison of bioabsorbable barriers with non-resorbable barriers in guided tissue regeneration in the treatment of human intrabony defects. J Periodontol 69:632–641

    Article  PubMed  Google Scholar 

  30. Kohal RJ, Trejo PM, Wirsching C, Hurzeler MB, Caffesse RG (1999) Comparison of bioabsorbable and bioinert membranes for guided bone regeneration around non-submerged implants. An experimental study in the mongrel dog. Clin Oral Implants Res 10:226–237

    Article  PubMed  Google Scholar 

  31. Zitzmann NU, Naef R, Scharer P (1997) Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 12:844–852

    PubMed  Google Scholar 

  32. Ryoo HM, Lee MH, Kim YJ (2006) Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366:51–57

    Article  PubMed  Google Scholar 

  33. Soderberg SS, Karlsson G, Karlsson S (2009) Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Ann N Y Acad Sci 1176:55–69

    Article  PubMed  Google Scholar 

  34. Aybar B, Emes Y, Atalay B, Vural P, Kaya AS, Eren SN, Işsever H, Bilir A (2008) Effects of bone morphogenetic protein on neonatal rat calvarial osteoblast-like cells: an in vitro study. J Biomed Mater Res A 86:560–568

    PubMed  Google Scholar 

  35. Bosetti M, Boccafoschi F, Leigheb M, Cannas MF (2007) Effect of different growth factors on human osteoblasts activities: a possible application in bone regeneration for tissue engineering. Biomol Eng 24:613–618

    Article  PubMed  Google Scholar 

  36. Fang H, Yang X, Chen A, Luo Y (2007) Effect of rhBMP-2 and osteogenic revulsants on proliferation and differentiation of bone marrow stromal cells in rats. J Huazhong Univ Sci Technol Med Sci 27:561–563

    Article  PubMed  Google Scholar 

  37. Van der Zande M, Walboomers XF, Briest A, Springer M, Alava JI, Jansen JA (2008) The effect of combined application of TGFbeta-1, BMP-2, and COLLOSS E on the development of bone marrow derived osteoblast-like cells in vitro. J Biomed Mater Res A 86:788–795

    PubMed  Google Scholar 

  38. Zheng Y, Wu G, Zhao J, Wang L, Sun P, Gu Z (2010) rhBMP2/7 heterodimer: an osteoblastogenesis inducer of not higher potency but lower effective concentration compared with rhBMP2 and rhBMP7 homodimers. Tissue Eng Part A 16:879–887

    Article  PubMed  Google Scholar 

  39. Miron RJ, Zhang YF (2012) Osteoinduction: a review of old concepts with new standards. J Dent Res, in press

  40. Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77:626–631

    Article  PubMed  Google Scholar 

  41. Liu Y, Wu G, de Groot K (2010) Biomimetic coatings for bone tissue engineering of critical-sized defects. J R Soc Interf 7(Suppl 5):S631–S647

    Article  Google Scholar 

  42. Axelrad TW, Einhorn TA (2009) Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev 20:481–488

    Article  PubMed  Google Scholar 

  43. Burks MV, Nair L (2010) Long-term effects of bone morphogenetic protein-based treatments in humans. J Long Term Eff Med Implants 20:277–293

    Article  PubMed  Google Scholar 

  44. Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. Chir Organi Mov 92:161–168

    Article  PubMed  Google Scholar 

  45. Herford AS (2009) rhBMP-2 as an option for reconstructing mandibular continuity defects. J Oral Maxillofac Surg 67:2679–2684

    Article  PubMed  Google Scholar 

  46. Nauth A, Ristiniemi J, McKee MD, Schemitsch EH (2009) Bone morphogenetic proteins in open fractures: past, present, and future. Injury 40(Suppl 3):S27–S31

    Article  PubMed  Google Scholar 

  47. Cochran DL, Schenk R, Buser D, Wozney JM, Jones AA (1999) Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J Periodontol 70:139–150

    Article  PubMed  Google Scholar 

  48. Cochran DL, Jones AA, Lilly LC, Fiorellini JP, Howell H (2000) Evaluation of recombinant human bone morphogenetic protein-2 in oral applications including the use of endosseous implants: 3-year results of a pilot study in humans. J Periodontol 71:1241–1257

    Article  PubMed  Google Scholar 

  49. Sawyer AA, Song SJ, Susanto E, Chuan P, Lam CX, Woodruff MA, Hutmacher DW, Cool SM (2009) The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials 30:2479–2488

    Article  PubMed  Google Scholar 

  50. Jung RE, Windisch SI, Eggenschwiler AM, Thoma DS, Weber FE, Hämmerle CH (2009) A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clin Oral Implants Res 20:660–666

    Article  PubMed  Google Scholar 

  51. Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A 16:725–733

    Article  PubMed  Google Scholar 

  52. Laflamme C, Curt S, Rouabhia M (2010) Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol 55:689–701

    Article  PubMed  Google Scholar 

  53. Bennett JH, Carter DH, Alavi AL, Beresford JN, Walsh S (2001) Patterns of integrin expression in a human mandibular explant model of osteoblast differentiation. Arch Oral Biol 46:229–238

    Article  PubMed  Google Scholar 

  54. Miron RJ, Hedbom E, Ruggiero S, Bosshardt DD, Zhang Y, Mauth C, Gemperli AC, Iizuka T, Buser D, Sculean A (2011) Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin. PLoS One 6:e23375

    Article  PubMed  Google Scholar 

  55. Nygaard-Ostby P, Bakke V, Nesdal O, Susin C, Wikesjo UM (2011) Periodontal healing following reconstructive surgery: effect of guided tissue regeneration using a bioresorbable barrier device when combined with autogenous bone grafting. A randomized-controlled trial 10-year follow-up. J Clin Periodontol 37:366–373

    Article  Google Scholar 

  56. Schwarz F, Sahm N, Bieling K, Becker J (2009) Surgical regenerative treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane: a four-year clinical follow-up report. J Clin Periodontol 36:807–814

    Article  PubMed  Google Scholar 

  57. Sculean A, Nikolidakis D, Schwarz F (2008) Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials—biological foundation and preclinical evidence: a systematic review. J Clin Periodontol 35:106–116

    Article  PubMed  Google Scholar 

  58. Lieb E, Vogel T, Milz S, Dauner M, Schulz MB (2004) Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. II: Osteoblastic differentiation. Tissue Eng 10:1414–1425

    PubMed  Google Scholar 

  59. Zhang H, Ahmad M, Gronowicz G (2003) Effects of transforming growth factor-beta 1 (TGF-beta1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials 24:2013–2020

    Article  PubMed  Google Scholar 

  60. Zhang H, Aronow MS, Gronowicz GA (2005) Transforming growth factor-beta 1 (TGF-beta1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures. J Biomed Mater Res A 75:98–105

    PubMed  Google Scholar 

  61. Treasure T (2010) The "bone-less" bone graft: the use of bone morphogenic protein-2 in jaw reconstruction. J Indiana Dent Assoc 89:25–29

    PubMed  Google Scholar 

  62. Szpalski M, Gunzburg R (2005) Recombinant human bone morphogenetic protein-2: a novel osteoinductive alternative to autogenous bone graft? Acta Orthop Belg 71:133–148

    PubMed  Google Scholar 

  63. Garrison KR, Shemilt I, Donell S, Ryder JJ, Mugford M, Harvey I, Song F, Alt V (2010) Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 6:CD006950

    PubMed  Google Scholar 

  64. Schindeler A, Morse A, Peacock L, Mikulec K, Yu NY, Liu R, Kijumnuayporn S, McDonald MM, Baldock PA, Ruys AJ, Little DG (2010) Rapid cell culture and pre-clinical screening of a transforming growth factor-beta (TGF-beta) inhibitor for orthopaedics. BMC Musculoskelet Disord 11:105

    Article  PubMed  Google Scholar 

  65. Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Galléa S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 29:323–330

    Article  PubMed  Google Scholar 

  66. Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F (2008) BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283:3816–3826

    Article  PubMed  Google Scholar 

  67. Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C, Ting K, Wu B (2007) MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng 13:501–512

    Article  PubMed  Google Scholar 

Download references

Source of funding

No external funding, apart from the support of the authors' institution, was available for this study. We kindly thank Geistlich Pharma AG (Switzerland) for providing the barrier membranes used in this study.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Sculean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miron, R.J., Saulacic, N., Buser, D. et al. Osteoblast proliferation and differentiation on a barrier membrane in combination with BMP2 and TGFβ1. Clin Oral Invest 17, 981–988 (2013). https://doi.org/10.1007/s00784-012-0764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0764-7

Keywords

Navigation