Skip to main content
Log in

How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Stress shielding and nonphysiological load transfer after primary or revision total hip replacement (THR) prepare the ground for resorptive bone remodeling. The quality of the bone stock influences the risk of periprosthetic fractures and the severity of future revision surgeries. The question of whether or not bending stiffness and distal screw interlocking influence load transfer of a modular revision hip stem with a solid, hollow, and hollow-slotted stem extension led to the conception of this experimental study. The results were compared with a standard hip stem for primary THR.

Methods

Revision stems were implanted in photoelastically coated composite femora. Cortical strain mapping was conducted before and after insertion of the implants under standardized loading conditions, considering the relevant muscle forces. Statistical analysis was based on a 95% confidence interval and a variance analysis for repeated measurements.

Results

Significant stress shielding was observed after insertion of all types of hip stems compared with the intact femora. There was also a marked difference between strain alterations induced by standard and revision hip stems. With revision stems, the most distinct stress shielding effects were registered with the solid stem extension, particularly in the femoral diaphysis. Distal interlocking screws only had a local action on strain pattern and tended to enhance stress shielding at the midstem area when using the more flexible components.

Conclusion

More flexible revision stems provide a cortical strain pattern of the femur closer to the preoperative status. This may reduce resorptive bone remodeling in the long term. However, any type of revision stem tested in this study caused higher stress shielding than the hip stem for primary THR, especially in the diaphyseal region medially and laterally. With sufficient proximal anchorage, the influence of distal interlocking screws on the femoral strain pattern was localized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garellick G, Kärrholm J, Rogmark C, Herberts P. Swedish National Hip Arthroplasty Register (October 2009): Annual Report 2008. Swedish National Hip Arthroplasty Register. Department of Orthopaedics, Sahlgrenska University Hospital, SE-413 45 Göteborg. http://www.jru.orthop.gu.se.

  2. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE. The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop Relat Res. 1990;261:196–213.

    PubMed  Google Scholar 

  3. Cristofolini L. A critical analysis of stress shielding evaluation of hip prostheses. Crit Rev Biomed Eng. 1997;25:409–83.

    PubMed  CAS  Google Scholar 

  4. Engh CA, O′Connor D, Jasty M, McGovern TF, Bobyn JD, Harris WH. Quantification of implant micromotion, strain shielding and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res. 1992;285:13–29.

    PubMed  Google Scholar 

  5. Hua J, Walker PS. A comparison of cortical strains after cemented and press-fit proximal and distal femoral replacement. J Orthop Res. 1992;10:739–44.

    Article  PubMed  CAS  Google Scholar 

  6. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;274:124–34.

    PubMed  Google Scholar 

  7. Engh CA, Hooten JP, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Bobyn JD. Evaluation of bone ingrowth in proximally and extensively porous-coated anatomic medullary locking prostheses retrieved at autopsy. J Bone Joint Surg Am. 1995;77:903–10.

    PubMed  CAS  Google Scholar 

  8. Sumner DR, Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res. 1992;274:202–12.

    PubMed  Google Scholar 

  9. Richards CJ, Duncan CP, Masri BA, Garbuz DS. Femoral revision hip arthroplasty: a comparison of two stem designs. Clin Orthop Relat Res. 2010;468:491–6.

    Article  PubMed  Google Scholar 

  10. Iwana D, Nishii T, Miki H, Sugano N, Sakai T, Ohzono K, Yoshikawa H. Proximal bone remodelling differed between two types of titanium long femoral components after cementless revision arthroplasty. Int Orthop. 2008;32:431–6.

    Article  PubMed  Google Scholar 

  11. Kärrholm J, Razaznejad R. Fixation and bone remodeling around a low stiffness stem in revision surgery. Clin Orthop Relat Res. 2008;466:380–8.

    Article  PubMed  Google Scholar 

  12. Hansen M, Degreif J, Runkel M, Vogel N, Rommens PM. Die Versorgung von Femurfrakturen bei Hüftendoprothese. Erste Ergebnisse mit einem elastisch stielverlängerten Prothesenschaft. Unfallchirurgie. 1998;24:154–61 (in German).

    Google Scholar 

  13. Wenzl HR. Die Verriegelungsprothese. Z Allg Med. 1998;74:190–1 (in German).

  14. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:921–6.

    Google Scholar 

  15. Brand RA, Pedersen DR, Davy DT, Kotzar GM, Heiple KG, Goldberg VM. Comparison of hip force calculations and measurements in the same patient. J Arthroplasty. 1994;9:45–51.

    Article  PubMed  CAS  Google Scholar 

  16. Stansfield BW, Nicol AC, Paul JP, Kelly IG, Graichen F, Bergmann G. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech. 2003;36:929–36.

    Article  PubMed  CAS  Google Scholar 

  17. Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L. Influence of muscle forces on femoral strain distribution. J Biomech. 1998;31:841–6.

    Article  PubMed  CAS  Google Scholar 

  18. Cristofolini L, Viceconti M, Toni A, Giunti A. Influence of thigh muscles on the axial strains in a proximal femur during early stance in gait. J Biomech. 1995;28:617–24.

    Article  PubMed  CAS  Google Scholar 

  19. Doria C, De Santis V, Falcone G, Proietti L, De Santis E. Osseointegration in hip prostheses: experimental study in sheep. Int Orthop. 2003;27:272–7.

    Article  PubMed  CAS  Google Scholar 

  20. Gibbons CER, Davies AJ, Amis AA, Olearnik H, Parker BC, Scott JE. Periprosthetic bone mineral density changes with femoral components of differing design philosophy. Int Orthop. 2001;25:89–92.

    Article  PubMed  CAS  Google Scholar 

  21. Heiner AD, Brown TD. Structural properties of a new design of composite replicate femurs and tibias. J Biomech. 2001;34:773–81.

    Article  PubMed  CAS  Google Scholar 

  22. Steinhauser E, Ellenrieder M, Gruber G, Busch R, Gradinger R, Mittelmeier W. Influence on load transfer of different femoral neck endoprostheses. Z Orthop Ihre Grenzgeb. 2006;144:386–93 (in German).

    Google Scholar 

  23. Birnbaum K, Siebert CH, Pandorf T, Schopphoff E, Prescher A, Niethard FU. Anatomical and biomechanical investigations of the iliotibial tract. Surg Radiol Anat. 2004;26:433–46.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou XM, Walker PS, Robertson DD. Effect of press-fit femoral stems on strains in the femur. A photoelastic coating study. J Arthroplasty. 1990;5:71–82.

    Article  PubMed  CAS  Google Scholar 

  25. Vail TP, Glisson RR, Koukoubis TD, Guilak F. The effect of hip stem material modulus on surface strain in human femora. J Biomech. 1998;31:619–28.

    Article  PubMed  CAS  Google Scholar 

  26. Emerson RH. Proximal ingrowth components. Clin Orthop Relat Res. 2004;420:130–4.

    Article  PubMed  Google Scholar 

  27. Incavo SJ, Johnson CC, Churchill DL, Beynnon BD. Bending stiffness, torsional stability, and insertion force of cementless femoral stems. Am J Orthop (Belle Mead NJ). 2001;30:323–7.

    CAS  Google Scholar 

  28. Hansen M, Blum J, Mehler D, Hessmann MH, Rommens PM. Double or triple interlocking when nailing proximal tibial fractures? A biomechanical investigation. Arch Orthop Trauma Surg. 2009;129:1715–9.

    Article  PubMed  Google Scholar 

  29. Hardy DCR, Drossos K. Slotted intramedullary hip screw nails reduce proximal mechanical unloading. Clin Orthop Relat Res. 2003;406:176–84.

    Article  PubMed  Google Scholar 

  30. Eingartner C, Volkmann R, Winter E, Weise K, Weller S. A long straight stem with distal interlocking for uncemented stem revision in THR. Surg Technol Int. 2000;IX:273–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Raymonde Busch Dipl.-Math. (Institut für Medizinische Statistik und Epidemiologie, Technische Universität München) for her assistance in statistical analyses.

Conflict of interest

All authors disclose any commercial affiliations as well as consultancies, stock ownership or patent-licensing arrangements that could be considered to pose a conflict of interest regarding the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ellenrieder.

About this article

Cite this article

Ellenrieder, M., Steinhauser, E., Bader, R. et al. How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern. J Orthop Sci 17, 205–212 (2012). https://doi.org/10.1007/s00776-012-0201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-012-0201-4

Keywords

Navigation