Skip to main content
Log in

Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study

  • Original article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

The increase in the number of anterior lumbar interbody fusions being performed carries with it the potential for the long-term complication of adjacent segmental degeneration. While its exact mechanism remains uncertain, adjacent segment degeneration has become much more widespread. Using a nonlinear, three-dimensional finite element model to analyze and compare the biomechanical influence of anterior lumbar interbody fusion and lumbar disc degeneration on the superior adjacent intervertebral disc, we attempt to determine if anterior lumbar interbody fusion aggravates adjacent segment degeneration.

Methods

A normal three-dimensional non-linear finite element model of L3–5 has been developed. Three different grades of disc degeneration models (mild, moderate, severe) and one anterior lumbar interbody fusion model were developed by changing either the geometry or associated material properties of the L4–5 segment. The 800 N pre-compressive loading plus 10 Nm moments simulating flexion, extension, lateral bending and axial rotation in five steps was imposed on the L3 superior endplate of all models. The intradiscal pressure, intersegmental rotation range and Tresca stress of the annulus fibrosus in the L3–4 segment were investigated.

Results

The intradiscal pressure, intersegmental rotation range and Tresca stress of the L3–4 segment in the fusion model are higher than in the normal model and different degeneration models under all motion directions. The intradiscal pressures in the three degenerative models are higher than in the normal model in flexion, extension and lateral bending, whereas in axial rotation, the value of the mild degeneration model is lower. The intersegmental rotation ranges in the three degenerative models are higher than in the normal model in flexion and extension. The values for the mild degeneration model in lateral bending and all the degeneration models in axial rotation are lower than in the normal model. The Tresca stresses are higher in the three degenerative models than in the normal model.

Conclusion

Anterior lumbar interbody fusion has more adverse biomechanical influence than disc degeneration on the adjacent upper disc and may aggravate the adjacent upper segmental degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine (Phila Pa 1976). 1988;13:375–7.

    CAS  Google Scholar 

  2. Miyakoshi N, Abe E, Shimada Y, Okuyama K, Suzuki T, Sato K. Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine (Phila Pa 1976). 2000;25:1837–42.

    CAS  Google Scholar 

  3. Wai EK, Santos ER, Morcom RA, Fraser RD. Magnetic resonance imaging 20 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976). 2006;31:1952–6.

    Google Scholar 

  4. Van Horn JR, Bohnen LM. The development of discopathy in lumbar discs adjacent to a lumbar anterior interbody spondylodesis. A retrospective matched-pair study with a postoperative follow-up of 16 years. Acta Orthop Belg. 1992;58:280–6.

    PubMed  Google Scholar 

  5. Chen CS, Cheng CK, Liu CL, Lo WH. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys. 2001;23:483–91.

    Article  PubMed  CAS  Google Scholar 

  6. Guigui P, Wodecki P, Bizot P, Lambert P, Chaumeil G, Deburge A. Long-term influence of associated arthrodesis on adjacent segments in the treatment of lumbar stenosis: a series of 127 cases with 9-year follow-up. Rev Chir Orthop Reparatrice Appar Mot. 2000;86:546–57.

    PubMed  CAS  Google Scholar 

  7. Rao RD, David KS, Wang M. Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cages. Spine (Phila Pa 1976). 2005;30:2772–6.

    Google Scholar 

  8. Weinhoffer SL, Guyer RD, Herbert M, Griffith SL. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976). 1995;20:526–31.

    CAS  Google Scholar 

  9. Dekutoski MB, Schendel MJ, Ogilvie JW, Olsewski JM, Wallace LJ, Lewis JL. Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976). 1994;19:1745–51.

    CAS  Google Scholar 

  10. Stokes IA, Wilder DG, Frymoyer JW, Pope MH. 1980 Volvo award in clinical sciences. Assessment of patients with low-back pain by biplanar radiographic measurement of intervertebral motion. Spine (Phila Pa 1976). 1981;6:233–40.

    CAS  Google Scholar 

  11. Chow DH, Luk KD, Evans JH, Leong JC. Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976). 1996;21:549–55.

    CAS  Google Scholar 

  12. Chen CS, Cheng CK, Liu CL. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech. 2002;15:53–63.

    PubMed  Google Scholar 

  13. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (Phila Pa 1976). 1997;22:1085–91.

    CAS  Google Scholar 

  14. Hutton WC, Ganey TM, Elmer WA, Kozlowska E, Ugbo JL, Doh ES, Whitesides TE. Does long-term compressive loading on the intervertebral disc cause degeneration? Spine (Phila Pa 1976). 2000;25:2993–3004.

    CAS  Google Scholar 

  15. Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976). 2000;25:1477–83.

    CAS  Google Scholar 

  16. Kim YE, Goel VK, Weinstein JN, Lim TH. Effect of disc degeneration at one level on the adjacent level in axial mode. Spine (Phila Pa 1976). 1991;16:331–5.

    CAS  Google Scholar 

  17. Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments––a finite element model study. J Biomech. 2009;42:341–8.

    Article  PubMed  Google Scholar 

  18. Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ. The risk of disc prolapses with complex loading in different degrees of disc degeneration––a finite element analysis. Clin Biomech (Bristol, Avon). 2007;22:988–98.

    Article  Google Scholar 

  19. White AA III, Panjabi MM. Clinical biomechanics of the spine. Philadelphia: J.B. Lippincott Company; 1990.

  20. Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon). 2006;21:337–44.

    Article  Google Scholar 

  21. Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech. 2006;39:2484–90.

    Article  PubMed  Google Scholar 

  22. Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 2005;3:125–40.

    Article  PubMed  CAS  Google Scholar 

  23. Skalli W, Robin S, Lavaste F, Dubousset J. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model. Spine (Phila Pa 1976). 1993;18:536–45.

    CAS  Google Scholar 

  24. Chosa E, Goto K, Totoribe K, Tajima N. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method. J Spinal Disord Tech. 2004;17:134–9.

    PubMed  Google Scholar 

  25. Adams MA, McNally DS, Dolan P. ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Jt Surg Br. 1996;78:965–72.

    Article  CAS  Google Scholar 

  26. Iatridis JC, Setton LA, Weidenbaum M, Mow VC. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J Orthop Res. 1997;15:318–22.

    Article  PubMed  CAS  Google Scholar 

  27. Boden SD, Riew KD, Yamaguchi K, Branch TP, Schellinger D, Wiesel SW. Orientation of the lumbar facet joints: association with degenerative disc disease. J Bone Jt Surg Am. 1996;78:403–11.

    CAS  Google Scholar 

  28. Holzapfel GA, Stadler M. Role of facet curvature for accurate vertebral facet load analysis. Eur Spine J. 2006;15:849–56.

    Article  PubMed  Google Scholar 

  29. Serhan HA, Varnavas G, Dooris AP, Patwadhan A, Tzermiadianos M. Biomechanics of the posterior lumbar articulating elements. Neurosurg Focus. 2007;22:E1.

    Article  PubMed  Google Scholar 

  30. Adams MA, Bogduk N, Burton K. The biomechanics of back pain. Edinburgh: Patricia Dolan Churchill Livingstone; 2002.

Download references

Conflict of interest

The authors declare that they have no conflict of interest. Each of the authors has read and concurs with the contents in the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujie Tang.

About this article

Cite this article

Tang, S., Rebholz, B.J. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study. J Orthop Sci 16, 221–228 (2011). https://doi.org/10.1007/s00776-011-0037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-011-0037-3

Keywords

Navigation