Skip to main content
Log in

Biosynthesized silver nanoparticles prevent bacterial infection in chicken egg model and mitigate biofilm formation on medical catheters

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Investigating the application of innovative antimicrobial surface coatings on medical devices is an important field of research. Many of these coatings have significant drawbacks, including biocompatibility, coating stability and the inability to effectively combat multiple drug-resistant bacteria. In this research, we developed an antibiofilm surface coating for medical catheters using biosynthesized silver nanoparticles (b-Cs-AgNPs) developed using leaves extract of Calliandra surinamensis. Various characterization techniques were employed to thoroughly characterize the synthesized b-Cs-AgNPs and c-AgNPs. b-Cs-AgNPs were compatible with human normal kidney cells and chicken embryos. It did not trigger any skin inflammatory response in in vivo rat model. b-Cs-AgNPs demonstrated potent zone of inhibition of 19.09 mm when subjected to the disc diffusion method in E. coli confirming strong antibacterial property. Different anti-bacterial assays including liquid growth curve, colony counting assay, biofilm formation assay supported the potent antimicrobial efficacy of b-Cs-AgNPs alone and when coated to medical grade catheters. Mechanistic studies reveal the presence of ferulic acid, that was important for the synthesis of b-AgNPs along with enhanced antibacterial effects of b-Cs-AgNPs compared to c-AgNPs, supported by molecular docking analysis. These results together demonstrated the effective role b-Cs-AgNPs in combating infections and mitigating biofilm formations, highlighting their need for further study in the field of biomedical applications.

Graphical abstract

Schematic Illustration of Eco-Friendly Synthesis for Biofilm Prevention on Medical Catheters and Bacterial Infection Mitigation. Created with BioRender.com.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data related to the manuscript will be readily available upon request.

References

  1. Bhardwaj T, Ramana LN, Sharma TK (2022) Current advancements and future road map to develop ASSURED microfluidic biosensors for infectious and non-infectious diseases. Biosensors 12(5):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arney D, Venkatasubramanian KK, Sokolsky O, Lee I (2011) Biomedical devices and systems security. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society, 2011, pp. 2376–2379

  3. Magill SS et al (2014) Multistate point-prevalence survey of health care-associated infections (in eng). N Engl J Med 370(13):1198–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noimark S, Dunnill CW, Wilson M, Parkin IP (2009) The role of surfaces in catheter-associated infections (in eng). Chem Soc Rev 38(12):3435–3448

    Article  CAS  PubMed  Google Scholar 

  5. Burroughs L, Ashraf W, Singh S, Martinez-Pomares L, Bayston R, Hook AL (2020) Development of dual anti-biofilm and anti-bacterial medical devices (in eng). Biomater Sci 8(14):3926–3934

    Article  CAS  PubMed  Google Scholar 

  6. Keum H et al (2017) Prevention of bacterial colonization on catheters by a one-step coating process involving an antibiofouling polymer in water. ACS Appl Mater Interfaces 9(23):19736–19745

    Article  CAS  PubMed  Google Scholar 

  7. Francolini I, Donelli G, Stoodley P (2003) Polymer designs to control biofilm growth on medical devices. Rev Environ Sci Biotechnol 2(2):307–319

    Article  CAS  Google Scholar 

  8. Gwisai T et al (2017) Repurposing niclosamide as a versatile antimicrobial surface coating against device-associated, hospital-acquired bacterial infections (in eng). Biomed Mater 12(4):045010

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33(11):637–652

    Article  CAS  PubMed  Google Scholar 

  10. Ding X et al (2012) Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33(28):6593–6603

    Article  CAS  PubMed  Google Scholar 

  11. Woo J et al (2020) Facile synthesis and coating of aqueous antifouling polymers for inhibiting pathogenic bacterial adhesion on medical devices. Prog Org Coat 147:105772

    Article  CAS  Google Scholar 

  12. Sohns JM, Bavendiek U, Ross TL, Bengel FM (2017) Targeting cardiovascular implant infection: multimodality and molecular imaging (in eng). Circ Cardiovasc Imaging 10(12)

  13. Devine R, Singha P, Handa H (2019) Versatile biomimetic medical device surface: hydrophobin coated, nitric oxide-releasing polymer for antimicrobial and hemocompatible applications. Biomater Sci 7(8):3438–3449. https://doi.org/10.1039/C9BM00469F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damodaran VB, Murthy NS (2016) Bio-inspired strategies for designing antifouling biomaterials (in eng). Biomater Res 20:18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng W, Jia Y, Chen W, Wang G, Guo X, Jiang X (2017) Universal coating from electrostatic self-assembly to prevent multidrug-resistant bacterial colonization on medical devices and solid surfaces (in eng). ACS Appl Mater Interfaces 9(25):21181–21189

    Article  CAS  PubMed  Google Scholar 

  16. Martinez-Gutierrez F et al (2013) Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29(6):651–660

    Article  CAS  PubMed  Google Scholar 

  17. Loo C-Y, Young PM, Lee W-H, Cavaliere R, Whitchurch CB, Rohanizadeh R (2014) Non-cytotoxic silver nanoparticle-polyvinyl alcohol hydrogels with anti-biofilm activity: designed as coatings for endotracheal tube materials. Biofouling 30(7):773–788

    Article  CAS  PubMed  Google Scholar 

  18. Ashmore DA et al (2018) Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Revista do Instituto de Medicina Tropical de São Paulo 60:e18.

  19. Sahoo B et al (2023) Photocatalytic activity of biosynthesized silver nanoparticle fosters oxidative stress at nanoparticle interface resulting in antimicrobial and cytotoxic activities. Environ Toxicol

  20. Campo-Beleño C et al (2022) Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett Appl Microbiol 75(3):680–688

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mukherjee S et al (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3):316

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Indust Crops Prod 70:356–373

    Article  CAS  Google Scholar 

  23. Omar SM, Ahmat N, Nik Azmin NF, Sabandar CW, Muqarrabun A, Ramadhan LM (2013) Isolation and characterization of chemical constituents from the flower of Calliandra surinamensis benth. Open Conf Proc J 4(1)

  24. Falodun A, Irabor EE (2008) Phytochemical, proximate, antioxidant and free radical scavenging evaluations of Calliandria surinamensis (in eng). Acta Pol Pharm 65(5):571–575

    CAS  PubMed  Google Scholar 

  25. Procópio TF et al (2017) CasuL: a new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect. Int J Biol Macromol 98:419–429

    Article  PubMed  Google Scholar 

  26. Alzahrani A, Abbott G, Young L, Igoli J, Gray A, Ferro V (2016) Phytochemical and biological investigation of Calliandra surinamensis as a potential treatment for diabetes. Planta Med 82(Suppl. 01):P385

    Google Scholar 

  27. Somba GC, Edi HJ, Siampa JP (2019) Formulasi sediaan krim ekstrak etanol daun kaliandra (Calliandra surinamensis) dan uji aktivitas antibakterinya terhadap bakteri Staphylococcus aureus. Pharmacon 8(4):809–814

    Article  Google Scholar 

  28. Domitrović R, Rashed K, Cvijanović O, Vladimir-Knežević S, Škoda M, Višnić A (2015) Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice (in eng). Chem Biol Interact 230:21–29

    Article  PubMed  Google Scholar 

  29. Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285(2):109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 9(1):1–9

    Article  CAS  Google Scholar 

  31. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C 53:298–309

    Article  CAS  Google Scholar 

  32. Xiao F, Xu T, Lu B, Liu R (2020) Guidelines for antioxidant assays for food components. Food Front 1(1):60–69

    Article  Google Scholar 

  33. Chowdhury SR, Mukherjee S, Das S, Patra CR, Iyer PK (2017) Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles. Chem Sci 8(11):7566–7575. https://doi.org/10.1039/C7SC03321D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G (2020) Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 11(1):37–44

    Article  PubMed  Google Scholar 

  35. García-Gareta E, Binkowska J, Kohli N, Sharma V (2020) Towards the development of a novel ex ovo model of infection to pre-screen biomaterials intended for treating chronic wounds. J Funct Biomater 11(2):37

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mukherjee S et al (2023) Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate. Nat Biomed Eng 7(7):867–886

    Article  CAS  PubMed  Google Scholar 

  37. Kragh KN, Alhede M, Kvich L, Bjarnsholt T (2019) Into the well—a close look at the complex structures of a microtiter biofilm and the crystal violet assay. Biofilm 1:100006

    Article  PubMed  PubMed Central  Google Scholar 

  38. Siddique MH et al. (2020) Effect of silver nanoparticles on biofilm formation and EPS production of multidrug-resistant Klebsiella pneumoniae. BioMed Res Int 6398165

  39. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discover. ACS Publications

  40. Kerker M (1985) The optics of colloidal silver: something old and something new. J Colloid Interface Sci 105(2):297–314

    Article  CAS  Google Scholar 

  41. Magdassi S, Bassa A, Vinetsky Y, Kamyshny A (2003) Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater 15(11):2208–2217

    Article  CAS  Google Scholar 

  42. Kotcherlakota R et al (2019) Biosynthesized gold nanoparticles: in vivo study of near-infrared fluorescence (NIR)-based bio-imaging and cell labeling applications. ACS Biomater Sci Eng 5(10):5439–5452

    Article  CAS  PubMed  Google Scholar 

  43. Allaka G, King MFL, Yepuri V, Narayana RL (2023) Synthesis of silver oxide nanoparticles using gomutra mediation and their investigations on anti-oxidant property. Mater Today: Proc

  44. Korkmaz N, Karadağ A (2021) Microwave assisted green synthesis of Ag, Ag2O, and Ag2O3 nanoparticles. J Turkish Chem Soc Sect A: Chem 8(2):585–592

    Article  CAS  Google Scholar 

  45. He Y et al (2017) Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv 7(63):39842–39851. https://doi.org/10.1039/C7RA05286C

    Article  CAS  Google Scholar 

  46. Mochalin V, Osswald S, Gogotsi Y (2009) Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chem Mater 21(2):273–279

    Article  CAS  Google Scholar 

  47. Allafchian AR, Mirahmadi-Zare SZ, Jalali SAH, Hashemi SS, Vahabi MR (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 6(2):129–135

    Article  CAS  Google Scholar 

  48. Konappa N et al (2021) Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules 11(4):535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bassetti S, Tschudin-Sutter S, Egli A, Osthoff M (2022) Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med 99:7–12

    Article  CAS  PubMed  Google Scholar 

  50. Ahmad SA et al (2020) Bactericidal activity of silver nanoparticles: a mechanistic review. Mater Sci Energy Technol 3:756–769

    Google Scholar 

  51. Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents (in eng). Open Microbiol J 11:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bala Subramaniyan S, Senthilnathan R, Arunachalam J, Anbazhagan V (2020) Revealing the significance of the glycan binding property of Butea monosperma seed lectin for enhancing the antibiofilm activity of silver nanoparticles against uropathogenic Escherichia coli. Bioconjugate Chem 31(1):139–148

    Article  CAS  Google Scholar 

  53. Mikhlif H (2019) Ecofriendly route for waste upcycling and silver nanoparticles synthesis from citrus reticulata Peel. Int J Nanoelectron Mater 12:349–356

    Google Scholar 

  54. Procópio TF et al (2018) Calliandra surinamensis lectin (CasuL) does not impair the functionality of mice splenocytes, promoting cell signaling and cytokine production. Biomed Pharmacother 107:650–655

    Article  PubMed  Google Scholar 

  55. McConkey BJ, Sobolev V, Edelman M (2022) The performance of current methods in ligand–protein docking. Curr Sci 845–856

  56. Borges A, Ferreira C, Saavedra MJ, Simões M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19(4):256–265

    Article  CAS  PubMed  Google Scholar 

  57. Gross CH et al (2003) Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance (in eng). Antimicrob Agents Chemother 47(3):1037–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Whaley SG, Rock CO (2020) Alternate fatty acid synthesis initiation in Escherichia coli. FASEB J 34(S1):1–1

    Article  Google Scholar 

  59. Scotti R, Casciaro B, Stringaro A, Maggi F, Colone M, Gabbianelli R (2024) Fighting microbial infections from Escherichia coli O157: H7: the combined use of three essential oils of the cymbopogon genus and a derivative of Esculentin-1a peptide. Antibiotics 13(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Couturier M, Bahassi EM, Van Melderen L (1998) Bacterial death by DNA gyrase poisoning. Trends Microbiol 6(7):269–275

    Article  CAS  PubMed  Google Scholar 

  61. Lu X, Tang J, Zhang Z, Ding K (2015) Bacterial β-ketoacyl-acyl carrier protein synthase III (FabH) as a target for novel antibacterial agents design. Curr Med Chem 22(5):651–667

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Preston JF III, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186(9):2724–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dhahi RM, Mikhlif HM (2019) Ecofriendly route for waste upcycling and silver nanoparticles synthesis from citrus reticulata Peel. Int J Nanoelectron Mater 12(3)

  64. Meruvu H, Vangalapati M, Chippada SC, Bammidi SR (2011) Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. J Rasayan Chem 4(1):217–222

    CAS  Google Scholar 

  65. Shivashankarappa A, Sanjay KR (2020) Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies. Braz J Microbiol 51:939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rautela A, Rani J (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 10(1):1–10

    Article  Google Scholar 

  67. Ahmad A et al (2017) The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb Pathog 102:133–142

    Article  CAS  PubMed  Google Scholar 

  68. Gross CH et al (2003) Active-site residues of Escherichia coli DNA gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to novobiocin resistance. Antimicrobial Agents Chemother 47(3):1037–1046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

LP and AU thank UGC, New Delhi for their junior research fellowship. Dr Sudip Mukherjee acknowledges director (Prof. Pramod Kumar Jain), Indian Institute of Technology (BHU) for providing research infrastructure and other facilities. SM further acknowledged research fund support from IIT (BHU) [OH-35-Other Capital/Miscellaneous Grant] and the Royal Society of Chemistry, UK (No. R22-2922732087) for providing funding support for this work. Authors acknowledges Vaishali Yadav and Dr. Bama Charan Mondal, Department of Zoology, Banaras Hindu University, Varanasi, UP, India for helping in the confocal microscopic analysis and generously providing GFP-E. coli, respectively.

Funding

IIT (BHU) [OH-35-Other Capital/Miscellaneous Grant] and the Royal Society of Chemistry, UK (No. R22-2922732087).

Author information

Authors and Affiliations

Authors

Contributions

LP and SM has conceptualized the idea of this manuscript. LP, PS, MN, GS, AI, PP have performed the experiments, developed the methodology, and validated the results. SM and LP has written the original draft of the manuscript and revised. SM has acquired the funding and supervised the overall work as the corresponding author.

Corresponding author

Correspondence to Sudip Mukherjee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Dermal skin irritation study was performed after IAEC approval (IIT(BHU)/IAEC/2023/068; Approval Date: February 9, 2023).

Declaration of generative AI in scientific writing

No AI support was taken during the preparation of the manuscript at any stage.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 536 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, L., Sah, P., Nayak, M. et al. Biosynthesized silver nanoparticles prevent bacterial infection in chicken egg model and mitigate biofilm formation on medical catheters. J Biol Inorg Chem 29, 353–373 (2024). https://doi.org/10.1007/s00775-024-02050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-024-02050-4

Keywords

Navigation