Skip to main content
Log in

Sensitive and highly selective colorimetric biosensing of vitamin-C and vitamin-B1 by flavoring agent-based silver nanoparticles

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A sensitive scheme was established for the detection of vitamin C (Ascorbic acid) and vitamin B1 (Thiamin HCl) using Maltol capped AgNPs (McAgNPs) as colorimetric sensor. The designed scheme showed an instant alteration in color from yellow to orange and green for vitamin-C and vitamin B1 sequentially. The probe was sensitive in a concentration range of (0–1 µM) with limit of detection 0.064 and 0.038 µM for vitamin C and vitamin B1 sequentially. The interaction mechanism between vitamin C and vitamin B1 and McAgNPs was evaluated by visible spectroscopy, FTIR, and AFM. Vitamin C attaches on the surface of nanoparticles by C=O group, while OH, C–S–C, and NH2 groups are involved in the binding of vitamin B1 with McAgNPs. The Vit-C/Vit-B1-McAgNPs complexes were stable over a wide range of pHs. The size of McAgNPs increased after the interaction of vitamin C/vitamin B1 from 30–40 nm to 500 and 400 nm sequentially. The scheme was successfully applied for the detection of vitamin C and vitamin B1 in urine, plasma, water, and commercial pharmaceutical tablets with good recoveries. The scheme was ascertained to be more sensitive than many other formerly described schemes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6:301–329

    Article  CAS  PubMed  Google Scholar 

  2. Shrivas K, Nirmalkar N, Thakur SS, Deb MK, Shinde SS, Shankar R (2018) Sucrose capped gold nanoparticles as a plasmonic chemical sensor based on non-covalent interactions: application for selective detection of vitamins B1 and B6 in brown and white rice food samples. Food Chem 250:14–21

    Article  CAS  PubMed  Google Scholar 

  3. Bellan LM, Wu D, Langer RS (2011) Current trends in nanobiosensor technology. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 3:229–246

    Article  CAS  Google Scholar 

  4. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors

  5. Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41

    Article  Google Scholar 

  6. Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han M-Y (2013) Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5:3127–3148

    Article  CAS  PubMed  Google Scholar 

  7. Sui N, Liu F, Li T, Wang L, Wang T, Liu M, Yu WW (2017) Colorimetric detection of ascorbic acid based on the trigger of gold nanoparticles aggregation by Cr (III) reduced from Cr (VI). Anal Sci 33:963–967

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  PubMed  Google Scholar 

  9. Shanmugaraj K, Ilanchelian M (2016) Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim Acta 183:1721–1728

    Article  CAS  Google Scholar 

  10. David IG, Florea M-A, Cracea OG, Popa DE, Buleandra M, Iorgulescu EE, David V, Badea IA, Ciucu AA (2015) Voltammetric determination of B 1 and B 6 vitamins using a pencil graphite electrode. Chem Pap 69:901–910

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhou W-E, Yan J-Q, Liu M, Zhou Y, Shen X, Ma Y-L, Feng X-S, Yang J, Li G-H (2018) A review of the extraction and determination methods of thirteen essential vitamins to the human body: an update from 2010. Molecules 23:1484

    Article  PubMed Central  CAS  Google Scholar 

  12. Hacisevki A (2009) An overview of ascorbic acid biochemistry. Ankara Üniversitesi Eczacılık Fakültesi Dergisi 38:233–255

    CAS  Google Scholar 

  13. Rezaei B, Shahshahanipour M, Ensafi AA (2017) In situ production of silver nanoparticles for high sensitive detection of ascorbic acid via inner filter effect. Mater Sci Eng C 71:663–668

    Article  CAS  Google Scholar 

  14. Moreno P, Salvado V (2000) Determination of eight water-and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. J Chromatogr A 870:207–215

    Article  CAS  PubMed  Google Scholar 

  15. Rajamanikandan R, Ilanchelian M (2017) Simple and visual approach for highly selective biosensing of vitamin B1 based on glutathione coated silver nanoparticles as a colorimetric probe. Sens Actuators B Chem 244:380–386

    Article  CAS  Google Scholar 

  16. Tan J, Li R, Jiang Z-T (2011) Determination of thiamine (vitamin B1) in pharmaceutical tablets and human urine by titania-based ligand-exchange hydrophilic interaction chromatography. Anal Methods 3:1568–1573

    Article  CAS  Google Scholar 

  17. Zielinski MV (2014) Determination of thiamine in solution by UV-visible spectrophotometry: the effect of interactions with gold nanoparticles

  18. Gul W, Zahid S, Perveen S, Ahmad I (2014) Methods of analysis of thiamine: a review. RADS J Pharm Pharm Sci 2:39–47

    Google Scholar 

  19. Devaki SJ, Raveendran RL (2017) Vitamin C: sources, functions, sensing and analysis. In: Vitamin C. InTech

  20. Shi H, Xu Y, Wang Y, Song W (2010) Assembly of ferrocenylhexanethiol functionalized gold nanoparticles for ascorbic acid determination. Microchim Acta 171:81–89

    Article  CAS  Google Scholar 

  21. Ivanov S, Tsakova V, Mirsky VM (2006) Conductometric transducing in electrocatalytical sensors: detection of ascorbic acid. Electrochem Commun 8:643–646

    Article  CAS  Google Scholar 

  22. Mudabuka B, Ondigo D, Degni S, Vilakazi S, Torto N (2014) A colorimetric probe for ascorbic acid based on copper–gold nanoparticles in electrospun nylon. Microchim Acta 181:395–401

    Article  CAS  Google Scholar 

  23. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306

    Article  CAS  PubMed  Google Scholar 

  24. Kayamori Y, Katayama Y, Urata T (2000) Nonenzymatic elimination of ascorbic acid in clinical samples

  25. Mo Q, Liu F, Gao J, Zhao M, Shao N (2018) Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta 1003:49–55

    Article  CAS  PubMed  Google Scholar 

  26. Moghaddam AB, Gudarzy F, Ganjkhanlou Y (2014) A fluorescent probe for detecting thiamine using the luminescence intensity of nanoparticles. J Fluoresc 24:1025–1030

    Article  CAS  Google Scholar 

  27. Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F, Wang L (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95

    Article  CAS  PubMed  Google Scholar 

  28. Nemati F, Zare-Dorabei R, Hosseini M, Ganjali MR (2018) Fluorescence turn-on sensing of thiamine based on arginine–functionalized graphene quantum dots (Arg-GQDs): central composite design for process optimization. Sens Actuators B Chem 255:2078–2085

    Article  CAS  Google Scholar 

  29. Wang J, Peng X, Li D, Jiang X, Pan Z, Chen A, Huang L, Hu J (2018) Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@ SiO 2@ CdTe quantum dot hybrid. Microchim Acta 185:42

    Article  CAS  Google Scholar 

  30. Zhang Y, Fang X, Zhao H, Li Z (2018) A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta 181:318–325

    Article  CAS  PubMed  Google Scholar 

  31. Ding Y, Zhao J, Li B, Zhao X, Wang C, Guo M, Lin Y (2018) The CoOOH–TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid. Microchim Acta 185:131

    Article  CAS  Google Scholar 

  32. Rostami S, Mehdinia A, Jabbari A (2017) Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid. Spectrochim Acta Part A Mol Biomol Spectrosc 180:204–210

    Article  CAS  Google Scholar 

  33. Purbia R, Paria S (2018) Green synthesis of single-crystalline akaganeite nanorods for peroxidase mimic colorimetric sensing of ultralow-level vitamin B1 and sulfide ions. ACS Appl Nano Mater 1:1236–1246

    Article  CAS  Google Scholar 

  34. Lynch P, Young IS (2000) Determination of thiamine by high-performance liquid chromatography. J Chromatogr A 881:267–284

    Article  CAS  PubMed  Google Scholar 

  35. Garnero C, Longhi M (2010) Development of HPLC and UV spectrophotometric methods for the determination of ascorbic acid using hydroxypropyl-β-cyclodextrin and triethanolamine as photostabilizing agents

  36. Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43

    Article  CAS  PubMed  Google Scholar 

  37. Naqvi SS, Anwer H, Siddiqui A, Zohra RR, Ali SA, Shah MR, Hashim S (2021) Novel synthesis of maltol capped copper nanoparticles and their synergistic antibacterial activity with antibiotics. Plasmonics 16:1915–1928

    Article  CAS  Google Scholar 

  38. Naqvi S, Anwer H, Ahmed SW, Siddiqui A, Shah MR, Khaliq S, Ahmed A, Ali SA (2020) Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine. Spectrochim Acta Part A Mol Biomol Spectrosc 229:118002

    Article  CAS  Google Scholar 

  39. Naqvi S, Anwer H, Ahmed SW, Siddiqui A, Shah MR, Khaliq S, Ahmed A, Ali SA (2019) Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine, Spectrochimica Acta Part A Mol Biomol Spectrosc 118002

  40. Liu H, Na W, Liu Z, Chen X, Su X (2017) A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe. Biosens Bioelectron 92:229–233

    Article  CAS  PubMed  Google Scholar 

  41. Tan X, Gou Q, Yu Z, Pu Y, Huang J, Huang H, Dai S, Zhao G (2020) Nanocomposite based on organic framework-loading transition-metal co ion and cationic pillar [6] arene and its application for electrochemical sensing of l-ascorbic acid. Langmuir 36:14676–14685

    Article  CAS  PubMed  Google Scholar 

  42. Luo Y, Miao H, Yang X (2015) Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1. Talanta 144:488–495

    Article  CAS  PubMed  Google Scholar 

  43. Gao Y, Yan X, Li M, Gao H, Sun J, Zhu S, Han S, Jia L-N, Zhao X-E, Wang H (2018) A “turn-on” fluorescence sensor for ascorbic acid based on graphene quantum dots via fluorescence resonance energy transfer. Anal Methods 10:611–616

    Article  CAS  Google Scholar 

  44. Khan U, Niaz A, Shah A, Zaman MI, Zia MA, Iftikhar FJ, Nisar J, Ahmed MN, Akhter MS, Shah AH (2018) Thiamine-functionalized silver nanoparticles for the highly selective and sensitive colorimetric detection of Hg 2+ ions. New J Chem 42:528–534

    Article  CAS  Google Scholar 

  45. Fuller M, Kӧper I (2018) Polyelectrolyte-coated gold nanoparticles: the effect of salt and polyelectrolyte concentration on colloidal stability. Polymers 10:1336

    Article  PubMed Central  CAS  Google Scholar 

  46. Li D, Huang Y, Li J (2005) Influence of configuration of carboxylic acid capping ligands on the salt-induced aggregation of gold clusters. J Colloid Interface Sci 283:440–445

    Article  CAS  PubMed  Google Scholar 

  47. Mallakpour S, Sadaty MA (2016) Thiamine hydrochloride (vitamin B1) as modifier agent for TiO2 nanoparticles and the optical, mechanical, and thermal properties of poly (vinyl chloride) composite films. RSC Adv 6:92596–92604

    Article  CAS  Google Scholar 

  48. Kong W, Wu D, Li G, Chen X, Gong P, Sun Z, Chen G, Xia L, You J, Wu Y (2017) A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 165:677–684

    Article  CAS  PubMed  Google Scholar 

  49. Baytak AK, Aslanoglu M (2018) A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.01.005

    Article  Google Scholar 

  50. dos Santos PL, Katic V, Toledo KC, Bonacin JA (2018) Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sens Actuators B Chem 255:2437–2447. https://doi.org/10.1016/j.snb.2017.09.036

    Article  CAS  Google Scholar 

  51. Liu Y, Wei Z, Duan W, Ren C, Wu J, Liu D et al (2018) A dual-mode sensor for colorimetric and “turn-on” fluorescent detection of ascorbic acid. Dyes Pigm 149:491–497. https://doi.org/10.1016/j.dyepig.2017.10.039

    Article  CAS  Google Scholar 

  52. Malashikhina N, Pavlov V (2012) DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosens Bioelectron 33:241–246. https://doi.org/10.1016/j.bios.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  53. Niu W-J, Shan D, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. Carbon 96:1034–1042. https://doi.org/10.1016/j.carbon.2015.10.051

    Article  CAS  Google Scholar 

  54. Tan H, Li Q, Zhou Z, Ma C, Song Y, Xu F et al (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95. https://doi.org/10.1016/j.aca.2014.11.026

    Article  CAS  PubMed  Google Scholar 

  55. Rao KJ, Paria S (2014) Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and their application for thiamine detection. RSC Adv 4:28645–28652. https://doi.org/10.1039/C4RA03883E

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision, SSN, and HA; methodology, SSN, and HA; validation, SSN, and HA; formal analysis, SSN, HA, AS, and MRS; resources, SSN, HA and MRS; data curation, SSN, HA, and MRS; writing-original draft preparation, SSN, HA; writing-review and editing, SSN, AS and HA.

Corresponding author

Correspondence to Syeda Sumra Naqvi.

Ethics declarations

Conflict of interest

Authors declared no conflict of interest. All authors contributed significantly and have read and agreed to submit the manuscript to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

775_2022_1944_MOESM1_ESM.pdf

Supplementary file1Fig. S1a-b Stoichiometric ratio between McAgNPs and (a) Vit-C (b) Vit-B1. Fig. S2a-c AFM images of McAgNPs (a) Morphology and (b) 3-D image (c) 2-D image showing size of McAgNPs. Fig. S3a-b Visible spectral changes on Vit-C-McAgNPs and Vit-B1-McAgNPs complexes in the presence of (a) Lake water and Tap water (b) Urine and plasma. (PDF 686 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naqvi, S.S., Anwar, H., Siddiqui, A. et al. Sensitive and highly selective colorimetric biosensing of vitamin-C and vitamin-B1 by flavoring agent-based silver nanoparticles. J Biol Inorg Chem 27, 471–483 (2022). https://doi.org/10.1007/s00775-022-01944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01944-5

Keywords

Navigation