Skip to main content
Log in

Selenoprotein S inhibits inflammation-induced vascular smooth muscle cell calcification

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Vascular calcification is a prominent feature of many diseases including atherosclerotic cardiovascular disease (CVD), leading to high morbidity and mortality rates. A significant association of selenoprotein S (SelS) gene polymorphism with atherosclerotic CVD has been reported in epidemiologic studies, but the underlying mechanism is far from clear. To investigate the role of SelS in inflammation-induced vascular calcification, osteoblastic differentiation and calcification of vascular smooth muscle cells (VSMCs) induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α were compared between the cells with and without SelS knockdown. LPS or TNF-α induced osteoblastic differentiation and calcification of VSMCs, as showed by the increases of runt-related transcription factor 2 (Runx2) protein levels, Runx2 and type I collagen mRNA levels, alkaline phosphatase activity, and calcium deposition content. These changes were aggravated when SelS was knocked down by small interfering RNA. Moreover, LPS activated both classical and alternative pathways of nuclear factor-κB (NF-κB) signaling in calcifying VSMCs, which were further enhanced under SelS knockdown condition. SelS knockdown also exacerbated LPS-induced increases of proinflammatory cytokines TNF-α and interleukin-6 expression, as well as increases of endoplasmic reticulum (ER) stress markers glucose-regulated protein 78 and inositol-requiring enzyme 1α expression in calcifying VSMCs. In conclusion, the present study suggested that SelS might inhibit inflammation-induced VSMC calcification probably by suppressing activation of NF-κB signaling pathways and ER stress. Our findings provide new understanding of the role of SelS in vascular calcification, which will be potentially beneficial to the prevention of atherosclerotic CVD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

ALP:

Alkaline phosphatase

BSA:

Bovine serum albumin

Col I:

Type I collagen

CVD:

Cardiovascular disease

DMEM:

Dulbecco modified Eagle’s medium

ECL:

Enhanced chemiluminescence

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation

FCS:

Fetal calf serum

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GRP78:

78-kDa glucose-regulated protein

IL:

Interleukin

IRE1α:

Inositol-requiring enzyme 1α

LPS:

Lipopolysaccharide

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-κB:

Nuclear factor-κB

PCR:

Polymerase chain reaction

RANKL:

Receptor activator of NF-κB ligand

ROS:

Reactive oxygen species

Runx2:

Runt-related transcription factor 2

SelS:

Selenoprotein S

siRNA:

Small interference RNA

TNF-α:

Tumor necrosis factor-α

VSMCs:

Vascular smooth muscle cells

References

  1. Sage AP, Tintut Y, Demer LL (2010) Nat Rev Cardiol 7:528–536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Demer LL, Tintut Y (2014) Arterioscler Thromb Vasc Biol 34:715–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Leopold JA (2015) Trends Cardiovasc Med 25:267–274

    Article  PubMed  CAS  Google Scholar 

  4. Bessueille L, Magne D (2015) Cell Mol Life Sci 72:2475–2489

    Article  PubMed  CAS  Google Scholar 

  5. Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Hypertension 55:579–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, Cheng SL, Towler DA (2007) Arterioscler Thromb Vasc Biol 27:2589–2596

    Article  PubMed  CAS  Google Scholar 

  7. Tintut Y, Patel J, Parhami F, Demer LL (2000) Circulation 102:2636–2642

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda K, Souma Y, Akakabe Y, Kitamura Y, Matsuo K, Shimoda Y, Ueyama T, Matoba S, Yamada H, Okigaki M, Matsubara H (2012) Biochem Biophys Res Commun 425:39–44

    Article  PubMed  CAS  Google Scholar 

  9. Zhao G, Xu MJ, Zhao MM, Dai XY, Kong W, Wilson GM, Guan Y, Wang CY, Wang X (2012) Kidney Int 82:34–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M (2013) J Am Heart Assoc 2:e000238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rayman MP (2012) Lancet 379:1256–1268

    Article  PubMed  CAS  Google Scholar 

  12. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Physiol Rev 94:739–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee JH, Park KJ, Jang JK, Jeon YH, Ko KY, Kwon JH, Lee SR, Kim IY (2015) J Biol Chem 290:29941–29952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gao Y, Hannan NR, Wanyonyi S, Konstantopolous N, Pagnon J, Feng HC, Jowett JB, Kim KH, Walder K, Collier GR (2006) Cytokine 33:246–251

    Article  PubMed  CAS  Google Scholar 

  15. Fradejas N, Serrano-Perez Mdel C, Tranque P, Calvo S (2011) Glia 59:959–972

    Article  PubMed  Google Scholar 

  16. Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J, Abel Azim DM, Cai G, Mahaney MC, Comuzzie AG, Dyer TD, Walder KR, Zimmet P, MacCluer JW, Collier GR, Kissebah AH, Blangero J (2005) Nat Genet 37:1234–1241

    Article  PubMed  CAS  Google Scholar 

  17. Alanne M, Kristiansson K, Auro K, Silander K, Kuulasmaa K, Peltonen L, Salomaa V, Perola M (2007) Hum Genet 122:355–365

    Article  PubMed  CAS  Google Scholar 

  18. Cox AJ, Lehtinen AB, Xu J, Langefeld CD, Freedman BI, Carr JJ, Bowden DW (2013) Acta Diabetol 50:391–399

    Article  PubMed  CAS  Google Scholar 

  19. Moses EK, Johnson MP, Tommerdal L, Forsmo S, Curran JE, Abraham LJ, Charlesworth JC, Brennecke SP, Blangero J, Austgulen R (2008) Am J Obstet Gynecol 198(336):e331–e335

    Google Scholar 

  20. Shibata T, Arisawa T, Tahara T, Ohkubo M, Yoshioka D, Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I (2009) BMC Gastroenterol 9:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sutherland A, Kim DH, Relton C, Ahn YO, Hesketh J (2010) Genes Nutr 5:215–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu H, Lu Q, Huang K (2010) J Cell Biochem 111:1556–1564

    Article  PubMed  CAS  Google Scholar 

  23. Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM, Chen Y (2008) J Biol Chem 283:15319–15327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ye Y, Fu F, Li X, Yang J, Liu H (2016) J Cell Biochem 117:106–117

    Article  PubMed  CAS  Google Scholar 

  25. Liu H, Li X, Qin F, Huang K (2014) J Biol Inorg Chem 19:375–388

    Article  PubMed  CAS  Google Scholar 

  26. Chung CY, Park YL, Kim N, Oh HH, Myung DS, Kim JS, Cho SB, Lee WS, Kim HS, Ahn BW, Joo YE (2014) Clin Exp Immunol 178:537–547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Duan XH, Chang JR, Zhang J, Zhang BH, Li YL, Teng X, Zhu Y, Du J, Tang CS, Qi YF (2013) Apoptosis 18:1132–1144

    Article  PubMed  CAS  Google Scholar 

  30. Henaut L, Sanz AB, Martin-Sanchez D, Carrasco S, Villa-Bellosta R, Aldamiz-Echevarria G, Massy ZA, Sanchez-Nino MD, Ortiz A (2016) Cell Death Dis 7:e2305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, Lopez-Ongil S, Coll B, Fernandez E, Valdivielso JM (2009) Circ Res 104:1041–1048

    Article  PubMed  CAS  Google Scholar 

  32. Satomi-Kobayashi S, Kinugasa M, Kobayashi R, Hatakeyama K, Kurogane Y, Ishida T, Emoto N, Asada Y, Takai Y, Hirata K, Rikitake Y (2012) J Biol Chem 287:30336–30345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kageyama A, Matsui H, Ohta M, Sambuichi K, Kawano H, Notsu T, Imada K, Yokoyama T, Kurabayashi M (2013) PLoS ONE 8:e68197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li R, Mittelstein D, Kam W, Pakbin P, Du Y, Tintut Y, Navab M, Sioutas C, Hsiai T (2013) Am J Physiol Cell Physiol 304:C362–C369

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Zhang ZY, Chen XQ, Wang X, Cao H, Liu SW (2013) Acta Pharmacol Sin 34:480–486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhao MM, Xu MJ, Cai Y, Zhao G, Guan Y, Kong W, Tang C, Wang X (2011) Kidney Int 79:1071–1079

    Article  PubMed  CAS  Google Scholar 

  37. Palsson-McDermott EM, O’Neill LA (2004) Immunology 113:153–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kim I, Xu WJ, Reed JC (2008) Nat Rev Drug Discov 7:1013–1030

    Article  PubMed  CAS  Google Scholar 

  39. Pfaffenbach KT, Lee AS (2011) Curr Opin Cell Biol 23:150–156

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, Brandizzi F (2013) Trends Cell Biol 23:547–555

    Article  PubMed  CAS  Google Scholar 

  41. Liu GR, Deng J, Zhang Q, Song WB, Chen SL, Lou XX, Zhang PM, Pan KQ (2016) J Periodontol 87:828–836

    Article  PubMed  CAS  Google Scholar 

  42. Barnes PJ, Karin M (1997) N Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  43. Kanarek N, Ben-Neriah Y (2012) Immunol Rev 246:77–94

    Article  PubMed  CAS  Google Scholar 

  44. Sasaki CY, Barberi TJ, Ghosh P, Longo DL (2005) J Biol Chem 280:34538–34547

    Article  PubMed  CAS  Google Scholar 

  45. Yang F, Tang E, Guan K, Wang CY (2003) J Immunol 170:5630–5635

    Article  PubMed  CAS  Google Scholar 

  46. Ahmed AU, Sarvestani ST, Gantier MP, Williams BR, Hannigan GE (2014) J Biol Chem 289:27776–27793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kim SR, Kim HJ, Kim DI, Lee KB, Park HJ, Jeong JS, Cho SH, Lee YC (2015) Theranostics 5:1343–1362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hetz C (2012) Nat Rev Mol Cell Biol 13:89–102

    Article  PubMed  CAS  Google Scholar 

  49. Zhang KZ, Kaufman RJ (2008) Nature 454:455–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 21771068 and 31170775), the Fundamental Research Funds for the Central Universities of China (grant no. 2017KFYXJJ167) and Excellent Youth Foundation of Hubei Scientific Committee (grant no. 2014CFA022). We thank Analytical and Testing Center of Huazhong University of Science and Technology for allowing us to use its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Bian, W., Fu, F. et al. Selenoprotein S inhibits inflammation-induced vascular smooth muscle cell calcification. J Biol Inorg Chem 23, 739–751 (2018). https://doi.org/10.1007/s00775-018-1563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1563-7

Keywords

Navigation