Skip to main content
Log in

Selenium suppresses oxidative-stress-enhanced vascular smooth muscle cell calcification by inhibiting the activation of the PI3K/AKT and ERK signaling pathways and endoplasmic reticulum stress

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Vascular calcification is a prominent feature of many diseases, including atherosclerosis, and it has emerged as a powerful predictor of cardiovascular morbidity and mortality. A number of studies have examined the association between selenium and risk of cardiovascular diseases, but little is known about the role of selenium in vascular calcification. To determine the role of selenium in regulating vascular calcification, we assessed the effect of sodium selenite on oxidative-stress-enhanced vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Oxidative stress induced by xanthine/xanthine oxidase increased apoptosis, as determined by Hoechst 33342 staining and annexin V/propidium iodide staining, and it enhanced osteoblastic differentiation and calcification of VSMCs, on the basis of alkaline phosphatase activity, the expression of Runx2 and type I collagen, and calcium deposition. These effects of oxidative stress were significantly inhibited by selenite. The following processes may explain the inhibitory effects of selenite: (1) selenite significantly suppressed oxidative stress, as evidenced by the decrease of the oxidative status of the cell and lipid peroxidation levels, as well as by the increase of the total protein thiol content and the activity of the antioxidant selenoenzyme glutathione peroxidase; (2) selenite significantly attenuated oxidative-stress-induced activation of the phosphatidylinositol 3-kinase/AKT and extracellular-signal-regulated kinase signaling pathways, resulting in decreased osteoblastic differentiation of VSMCs; (3) selenite significantly inhibited oxidative-stress-activated endoplasmic reticulum stress, thereby leading to decreased apoptosis. Our results suggest a potential role of selenium in the prevention of vascular calcification, which may provide more mechanistic insights into the relationship between selenium and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

CHOP:

C/EBP homologous protein

Col I:

Type I collagen

2,7-DCFH-DA:

2,7-Dichlorofluorescein diacetate

ER:

Endoplasmic reticulum

ERK:

Extracellular-signal-regulated kinase

FITC:

Fluorescein isothiocyanate

GPx:

Glutathione peroxidase

GRP78:

78-kDa glucose-regulated protein

GSH:

Glutathione

MDA:

Malondialdehyde

MEK1:

Mitogen-activated protein kinase kinase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PERK:

Protein kinase RNA like ER kinase

PI:

Propidium iodide

PI3K:

Phosphatidylinositol 3-kinase

p-PERK:

Phosphorylated protein kinase RNA like endoplasmic reticulum kinase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBS-T:

20 mM tris(hydroxymethyl)aminomethane–HCl, pH 7.5, containing 137 mM NaCl and 0.1 % Tween 20

VSMC:

Vascular smooth muscle cell

XO:

Xanthine oxidase

XXO:

Xanthine/xanthine oxidase

References

  1. Sage AP, Tintut Y, Demer LL (2010) Nat Rev Cardiol 7:528–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL (2000) Circ Res 87:1055–1062

    Article  CAS  PubMed  Google Scholar 

  3. Trion A, van der Laarse A (2004) Am Heart J 147:808–814

    Article  CAS  PubMed  Google Scholar 

  4. Tang FT, Chen SR, Wu XQ, Wang TQ, Chen JW, Li J, Bao LP, Huang HQ, Liu PQ (2006) Calcif Tissue Int 79:326–339

    Article  CAS  PubMed  Google Scholar 

  5. Zoccali C, Mallamaci F, Tripepi G (2004) J Am Soc Nephrol 15:S77–S80

    Article  PubMed  Google Scholar 

  6. Valabhji J, McColl AJ, Richmond W, Schachter M, Rubens MB, Elkeles RS (2001) Diabetes Care 24:1608–1613

    Article  CAS  PubMed  Google Scholar 

  7. Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J Jr, Pomerantzeff PM, Laurindo FR (2008) Arterioscler Thromb Vasc Biol 28:463–470

    Article  CAS  PubMed  Google Scholar 

  8. Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM, Chen Y (2008) J Biol Chem 283:15319–15327

    Article  CAS  PubMed  Google Scholar 

  9. Mody N, Parhami F, Sarafian TA, Demer LL (2001) Free Radic Biol Med 31:509–519

    Article  CAS  PubMed  Google Scholar 

  10. Sutra T, Morena M, Bargnoux AS, Caporiccio B, Canaud B, Cristol JP (2008) Free Radic Res 42:789–797

    Article  CAS  PubMed  Google Scholar 

  11. Liberman M, Johnson RC, Handy DE, Loscalzo J, Leopold JA (2011) Biochem Biophys Res Commun 413:436–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hofmann Bowman MA, Gawdzik J, Bukhari U, Husain AN, Toth PT, Kim G, Earley J, McNally EM (2011) Arterioscler Thromb Vasc Biol 31:337–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T (2009) Nephrol Dial Transpl 24:2051–2058

    Article  CAS  Google Scholar 

  14. Yamada S, Taniguchi M, Tokumoto M, Toyonaga J, Fujisaki K, Suehiro T, Noguchi H, Iida M, Tsuruya K, Kitazono T (2012) J Bone Miner Res 27:474–485

    Article  CAS  PubMed  Google Scholar 

  15. Liu H, Lu Q, Huang K (2010) J Cell Biochem 111:1556–1564

    Article  CAS  PubMed  Google Scholar 

  16. Rayman MP (2000) Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  17. Hawkes WC, Alkan Z (2010) Biol Trace Elem Res 134:235–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Alehagen U, Johansson P, Bjornstedt M, Rosen A, Dahlstrom U (2013) Int J Cardiol 167:1860–1866

    Article  PubMed  Google Scholar 

  19. Stranges S, Navas-Acien A, Rayman MP, Guallar E (2010) Nutr Metab Cardiovasc Dis 20:754–760

    Article  CAS  PubMed  Google Scholar 

  20. Espinola-Klein C, Rupprecht HJ, Bickel C, Schnabel R, Genth-Zotz S, Torzewski M, Lackner K, Munzel T, Blankenberg S (2007) AtheroGene investigators. Am J Cardiol 99:808–812

    Article  CAS  PubMed  Google Scholar 

  21. Torzewski M, Ochsenhirt V, Kleschyov AL, Oelze M, Daiber A, Li H, Rossmann H, Tsimikas S, Reifenberg K, Cheng F, Lehr HA, Blankenberg S, Förstermann U, Münzel T, Lackner KJ (2007) Arterioscler Thromb Vasc Biol 27:850–857

    Article  CAS  PubMed  Google Scholar 

  22. Wu Q, Huang K, Xu H (2003) J Inorg Biochem 94:301–306

    Article  CAS  PubMed  Google Scholar 

  23. Wu Q, Huang K (2004) Biol Trace Elem Res 98:73–84

    Article  CAS  PubMed  Google Scholar 

  24. Tang R, Huang K (2004) J Inorg Biochem 98:1678–1685

    Article  CAS  PubMed  Google Scholar 

  25. Tang R, Liu H, Wang T, Huang K (2005) Arch Biochem Biophys 441:16–24

    Article  CAS  PubMed  Google Scholar 

  26. Wu Q, Huang K (2006) Biochim Biophys Acta 1761:350–359

    Article  CAS  PubMed  Google Scholar 

  27. Huang K, Liu H, Chen Z, Xu H (2002) Atherosclerosis 162:137–144

    Article  CAS  PubMed  Google Scholar 

  28. Smith JB, Brock TA (1983) J Cell Physiol 114:284–290

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Yuan L, Xu S, Zhang T, Wang K (2004) Life Sci 76:533–543

    Article  CAS  PubMed  Google Scholar 

  30. Denizot F, Lang R (1986) J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  32. Wada T, McKee MD, Steitz S, Giachelli CM (1999) Circ Res 84:166–178

    Article  CAS  PubMed  Google Scholar 

  33. Ellman GL (1959) Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  34. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Antioxid Redox Signal 14:1337–1383

    Article  CAS  PubMed  Google Scholar 

  35. Ron D, Walter P (2007) Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  36. Duan X, Zhou Y, Teng X, Tang C, Qi Y (2009) Biochem Biophys Res Commun 387:694–699

    Article  CAS  PubMed  Google Scholar 

  37. Duan XH, Chang JR, Zhang J, Zhang BH, Li YL, Teng X, Zhu Y, Du J, Tang CS, Qi YF (2013) Apoptosis 18:1132–1144

    Article  CAS  PubMed  Google Scholar 

  38. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, Kitamura M (2008) J Biol Chem 283:4252–4260

    Article  CAS  PubMed  Google Scholar 

  39. Clarke M, Bennett M (2006) Am J Nephrol 26:531–535

    Article  PubMed  Google Scholar 

  40. Yang GQ (1987) In: Coombs GF Jr, Spallholz JE, Levander OA, Oldfield JE (eds) Selenium in biology and medicine. Third international symposium. AVI, New York, pp 9–32

  41. Martindale JL, Holbrook NJ (2002) J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  42. Bear M, Butcher M, Shaughnessy SG (2008) J Cell Biochem 105:185–193

    Article  CAS  PubMed  Google Scholar 

  43. Nakahara T, Sato H, Shimizu T, Tanaka T, Matsui H, Kawai-Kowase K, Sato M, Iso T, Arai M, Kurabayashi M (2010) Biochem Biophys Res Commun 394:243–248

    Article  CAS  PubMed  Google Scholar 

  44. Ding HT, Wang CG, Zhang TL, Wang K (2006) J Cell Biochem 99:1343–1352

    Article  CAS  PubMed  Google Scholar 

  45. You H, Yang H, Zhu Q, Li M, Xue J, Gu Y, Lin S, Ding F (2009) Ren Fail 31:313–319

    Article  CAS  PubMed  Google Scholar 

  46. Lovdahl C, Thyberg J, Hultgardh-Nilsson A (2000) J Vasc Res 37:345–354

    Article  CAS  PubMed  Google Scholar 

  47. Winterbourn CC, Hampton MB (2008) Free Radic Biol Med 45:549–561

    Article  CAS  PubMed  Google Scholar 

  48. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP (2003) EMBO J 22:5501–5510

    Article  CAS  PubMed  Google Scholar 

  49. Levinthal DJ, Defranco DB (2005) J Biol Chem 280:5875–5883

    Article  CAS  PubMed  Google Scholar 

  50. Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Antioxid Redox Signal 12:839–849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the faculty of the Analytical and Testing Center of Huazhong University of Science and Technology. This work was supported by the National Natural Science Foundation of China (grants 31170775 and 30700136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Li, X., Qin, F. et al. Selenium suppresses oxidative-stress-enhanced vascular smooth muscle cell calcification by inhibiting the activation of the PI3K/AKT and ERK signaling pathways and endoplasmic reticulum stress. J Biol Inorg Chem 19, 375–388 (2014). https://doi.org/10.1007/s00775-013-1078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1078-1

Keywords

Navigation