Skip to main content

Advertisement

Log in

miR-33a-5p Suppresses ox-LDL-Stimulated Calcification of Vascular Smooth Muscle Cells by Targeting METTL3

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Oxidized low-density lipoprotein (ox-LDL) accumulation in the vascular wall plays a pivotal role in the development of atherosclerosis and vascular calcification. However, few studies focus on the regulatory roles of microRNAs in ox-LDL stimulated vascular calcification. The aim of the present study was to investigate how miR-33a-5p regulated vascular calcification stimulated by ox-LDL. In the present study, miR-33a-5p was downregulated during vascular smooth muscle cells (VSMCs) calcification and upon ox-LDL treatment. ox-LDL significantly stimulated VSMCs calcification, while miR-33a-5p overexpression by its mimics transfection inhibited alkaline phosphatase (ALP) activity, mineralization and marker genes associated with VSMCs calcification even in the presence of ox-LDL. Methyltransferase like 3 (METTL3) was the target gene of miR-33a-5p. METTL3 was upregulated during VSMCs calcification and upon ox-LDL treatment. When VSMCs were transfected with miR-33a-5p mimics, METTL3 was downregulated. METTL3 downregulation by siRNA method decreased VSMCs calcification even in the presence of ox-LDL. Taken together, these results suggest miR-33a-5p suppresses VSMCs calcification stimulated by ox-LDL via targeting METTL3, highlighting the critical role of miR-33a-5p/METTL3 in vascular calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data relevant to this article are available from the corresponding author upon reasonable request.

Abbreviations

ABCA1:

(ATP)-binding cassette subfamily A member 1

ABCG1:

ATP binding cassette subfamily G member 1G1

ALP:

Alkaline phosphatase

ColI:

Collagen I

GDM:

Gestational diabetes mellitus

HMGA2:

High mobility group AT-hook 2

MAPK:

Mitogen-activated protein kinase

METTL3:

Methyltransferase like 3

NF-κB:

Nuclear translocation of nuclear factor kappa B

n-LDL:

Native LDL

NOMO1:

Nodal modulator 1

OC:

Osteocalcin

ox-LDL:

Oxidized low-density lipoprotein

PTH:

Parathyroid hormone

PTH1r:

PTH 1 receptor

Runx2:

Runt-related transcription factor 2

SATB2:

Special AT-rich sequence-binding protein 2

SIRT6:

Sirtuin 6

SREBP2:

Sterol response binding protein 2

TLR4:

Toll like receptor 4

TGF-β:

Transforming growth factor β

VSMCs:

Vascular smooth muscle cells

XBP1s:

X-box binding protein l splicing

References

  1. Lee, S. J., Lee, I. K., & Jeon, J. H. (2020). Vascular calcification-new insights into its mechanism. International Journal of Molecular Science, 21(8), 2685. https://doi.org/10.3390/ijms21082685

    Article  CAS  Google Scholar 

  2. Lin, M. E., Chen, T., Leaf, E. M., Speer, M. Y., & Giachelli, C. M. (2015). Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. American Journal of Pathology, 185(7), 1958–1969. https://doi.org/10.1016/j.ajpath.2015.03.020

    Article  CAS  Google Scholar 

  3. Chistiakov, D. A., Myasoedova, V. A., Melnichenko, A. A., Grechko, A. V., & Orekhov, A. N. (2017). Calcifying matrix vesicles and atherosclerosis. Biomed Research International, 2017, 7463590. https://doi.org/10.1155/2017/7463590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song, Y., Hou, M., Li, Z., Luo, C., Ou, J. S., Yu, H., et al. (2017). TLR4/NF-κB/Ceramide signaling contributes to Ox-LDL-induced calcification of human vascular smooth muscle cells. European Journal of Pharmacology, 794, 45–51. https://doi.org/10.1016/j.ejphar.2016.11.029

    Article  CAS  PubMed  Google Scholar 

  5. Yan, J., Stringer, S. E., Hamilton, A., Charlton-Menys, V., Götting, C., Müller, B., et al. (2011). Decorin GAG synthesis and TGF-β signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells. Arteriosclerosis Thrombosis and Vascular Biology, 31(3), 608–615. https://doi.org/10.1161/atvbaha.110.220749

    Article  CAS  Google Scholar 

  6. Goettsch, C., Rauner, M., Hamann, C., Sinningen, K., Hempel, U., Bornstein, S. R., et al. (2011). Nuclear factor of activated T cells mediates oxidised LDL-induced calcification of vascular smooth muscle cells. Diabetologia, 54(10), 2690–2701. https://doi.org/10.1007/s00125-011-2219-0

    Article  CAS  PubMed  Google Scholar 

  7. Liao, L., Zhou, Q., Song, Y., Wu, W., Yu, H., Wang, S., et al. (2013). Ceramide mediates Ox-LDL-induced human vascular smooth muscle cell calcification via p38 mitogen-activated protein kinase signaling. PLoS ONE, 8(12), e82379. https://doi.org/10.1371/journal.pone.0082379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alkagiet, S., & Tziomalos, K. (2017). Vascular calcification: The role of microRNAs. Biomolecular Concepts, 8(2), 119–123. https://doi.org/10.1515/bmc-2017-0001

    Article  CAS  PubMed  Google Scholar 

  9. Costa, V., Carina, V., Raimondi, L., De Luca, A., Bellavia, D., Conigliaro, A., et al. (2019). MiR-33a controls hMSCS osteoblast commitment modulating the Yap/Taz expression through EGFR signaling regulation. Cells, 8(12), 1495. https://doi.org/10.3390/cells8121495

    Article  CAS  PubMed Central  Google Scholar 

  10. Chen, Q., Wang, M., & Wu, S. (2020). The lncRNA MCF2L-AS1 controls osteogenic differentiation by regulating miR-33a. Cell Cycle, 19(9), 1059–1065. https://doi.org/10.1080/15384101.2020.1747776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang, J. S., Ham, S. A., Yoo, T., Lee, W. J., Paek, K. S., Lee, C. H., et al. (2016). Sirtuin 1 mediates the actions of peroxisome proliferator-activated receptor δ on the oxidized low-density lipoprotein-triggered migration and proliferation of vascular smooth muscle cells. Molecular Pharmacology, 90(5), 522–529. https://doi.org/10.1124/mol.116.104679

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y., Gu, X., Li, D., Cai, L., & Xu, Q. (2019). METTL3 regulates osteoblast differentiation and inflammatory response via Smad signaling and MAPK signaling. Internal Journal of Molecular Science, 21(1), 199. https://doi.org/10.3390/ijms21010199

    Article  CAS  Google Scholar 

  13. Shi, X., Gao, J., Lv, Q., Cai, H., Wang, F., Ye, R., et al. (2020). Calcification in atherosclerotic plaque vulnerability: Friend or foe? Frontiers in Physiology, 11, 56. https://doi.org/10.3389/fphys.2020.00056

    Article  PubMed  PubMed Central  Google Scholar 

  14. Demer, L. L., & Tintut, Y. (2008). Vascular calcification: Pathobiology of a multifaceted disease. Circulation, 117(22), 2938–2948. https://doi.org/10.1161/circulationaha.107.743161

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang, M., Wu, Y., Yu, Y., Fu, Y., Yan, H., Wang, X., et al. (2019). Rutaecarpine prevented ox-LDL-induced VSMCs dysfunction through inhibiting overexpression of connexin 43. European Journal Pharmacology, 853, 84–92. https://doi.org/10.1016/j.ejphar.2019.03.028

    Article  CAS  Google Scholar 

  16. Lee, S. J., Lee, I. K., & Jeon, J. H. (2020). Vascular calcification-new insights into its mechanism. Internal Journal of Molecular Science, 21(8), 2685. https://doi.org/10.3390/ijms21082685

    Article  CAS  Google Scholar 

  17. Jiang, W., Zhang, Z., Li, Y., Chen, C., Yang, H., Lin, Q., et al. (2021). The cell origin and role of osteoclastogenesis and osteoblastogenesis in vascular calcification. Frontiers in Cardiovascular Medicine, 2021(8), 639740. https://doi.org/10.3389/fcvm.2021.639740

    Article  Google Scholar 

  18. Yang, P., Troncone, L., Augur, Z. M., Kim, S. S. J., McNeil, M. E., & Yu, P. B. (2020). The role of bone morphogenetic protein signaling in vascular calcification. Bone, 141, 115542. https://doi.org/10.1016/j.bone.2020.115542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leopold, J. A. (2014). MicroRNAs regulate vascular medial calcification. Cells, 3(4), 963–980. https://doi.org/10.3390/cells3040963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, W., Sun, B., Zhou, C., Ming, W., Zhang, S., & Wu, X. (2020). CircFOXP1/FOXP1 promotes osteogenic differentiation in adipose-derived mesenchymal stem cells and bone regeneration in osteoporosis via miR-33a-5p. Journal of Cellular and Molecular Medicine, 24(21), 12513–12524. https://doi.org/10.1111/jcmm.15792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mi, W., Shi, Q., Chen, X., Wu, T., & Huang, H. (2016). miR-33a-5p modulates TNF-α-inhibited osteogenic differentiation by targeting SATB2 expression in hBMSCs. FEBS Letters, 590(3), 396–407. https://doi.org/10.1002/1873-3468.12064

    Article  CAS  PubMed  Google Scholar 

  22. Price, N. L., Rotllan, N., Zhang, X., Canfrán-Duque, A., Nottoli, T., Suarez, Y., et al. (2019). Specific disruption of abca1 targeting largely mimics the effects of miR-33 knockout on macrophage cholesterol efflux and atherosclerotic plaque development. Circulation Research, 124(6), 874–880. https://doi.org/10.1161/CIRCRESAHA.118.314415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, S. H., Kim, G. J., Umemura, T., Lee, S. G., & Cho, K. J. (2017). Aberrant expression of plasma microRNA-33a in an atherosclerosis-risk group. Molecular Biology Reports, 44(1), 79–88. https://doi.org/10.1007/s11033-016-4082-z

    Article  CAS  PubMed  Google Scholar 

  24. Raskurazhev, A. A., Tanashyan, M. M., Shabalina, A. A., Kuznetsova, P. I., Kornilova, A. A., & Burmak, A. G. (2020). Micro-RNA in patients with carotid atherosclerosis. Human Physiology, 46, 880–885. https://doi.org/10.1134/S0362119720080113

    Article  CAS  Google Scholar 

  25. Horie, T., Baba, O., Kuwabara, Y., Chujo, Y., Watanabe, S., Kinoshita, M., et al. (2012). MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. Journal of the American Heart Association, 1(6), e003376. https://doi.org/10.1161/jaha.112.003376

    Article  PubMed  PubMed Central  Google Scholar 

  26. Price, N. L., Rotllan, N., Canfrán-Duque, A., Zhang, X., Pati, P., Arias, N., et al. (2017). Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Reports, 21(5), 1317–1330. https://doi.org/10.1016/j.celrep.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  27. Rayner, K. J., Sheedy, F. J., Esau, C. C., Hussain, F. N., Temel, R. E., Parathath, S., et al. (2011). Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation, 121(7), 2921–2931. https://doi.org/10.1172/jci57275

    Article  CAS  Google Scholar 

  28. He, J., Zhang, G., Pang, Q., Yu, C., Xiong, J., Zhu, J., et al. (2017). SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition. The FEBS Journal, 284(9), 1324–1337. https://doi.org/10.1111/febs.14055

    Article  CAS  PubMed  Google Scholar 

  29. Du, M., Zhang, Y., Mao, Y., Mou, J., Zhao, J., Xue, Q., et al. (2017). MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochemical and Biophysical Research Communications, 482(4), 582–589. https://doi.org/10.1016/j.bbrc.2016.11.077

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, M., Tang, M., Wu, Q., Wang, Z., Chen, Z., Ding, H., et al. (2020). LncRNA DANCR attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through regulating of miR-33a-5p/XBP1s. Aging, 12(2), 1778–1791. https://doi.org/10.18632/aging.102712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao, M., Lei, H., Liu, Q., Chen, Y., Zhao, L., Li, Q., et al. (2014). Effects of miR-33a-5P on ABCA1/G1-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS ONE, 9(10), e109722. https://doi.org/10.1371/journal.pone.0109722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xing, W., Li, T., Wang, Y., Qiang, Y., Ai, C., & Tang, H. (2020). MiR-33a-5p targets NOMO1 to modulate human cardiomyocyte progenitor cells proliferation and differentiation and apoptosis. Journal of Receptors and Signal Transduction, 14, 1–12. https://doi.org/10.1080/10799893.2020.1825492

    Article  CAS  Google Scholar 

  33. Feng, Y., Qu, X., Chen, Y., Feng, Q., Zhang, Y., Hu, J., et al. (2020). MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR. Reproductive Biology and Endocrinology, 18(1), 61. https://doi.org/10.1186/s12958-020-00618-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng, W., Dong, X., Zhao, Y., Wang, S., Jiang, H., Zhang, M., et al. (2019). Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Frontiers in Oncology, 9, 1403. https://doi.org/10.3389/fonc.2019.01403

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, X., Hua, W., Huang, X., Chen, Y., Zhang, J., & Li, G. (2019). Regulatory role of RNA N(6)-methyladenosine modification in bone biology and osteoporosis. Frontiers in Endocrinology, 10, 911. https://doi.org/10.3389/fendo.2019.00911

    Article  PubMed  Google Scholar 

  36. Yan, G., Yuan, Y., He, M., Gong, R., Lei, H., Zhou, H., et al. (2020). m(6)A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Molecular Therapy Nucleic Acids, 19, 421–436. https://doi.org/10.1016/j.omtn.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  37. Wu, Y., Xie, L., Wang, M., Xiong, Q., Guo, Y., Liang, Y., et al. (2018). Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communication, 9(1), 4772–4772. https://doi.org/10.1038/s41467-018-06898-4

    Article  CAS  Google Scholar 

  38. Chen, J., Ning, Y., Zhang, H., Song, N., Gu, Y., Shi, Y., et al. (2019). METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sciences, 239, 117034. https://doi.org/10.1016/j.lfs.2019.117034

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This word was funded by Shanghai Xuhui Central Hospital and The First Affiliated Hospital of Xinjiang Medical University.

Author information

Authors and Affiliations

Authors

Contributions

RH and LW conceived and designed the project. JL, LL and HZ acquired the data. RH analyzed the data. RH wrote the paper.

Corresponding authors

Correspondence to Ruimei Han or Lingpeng Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Luo, J., Wang, L. et al. miR-33a-5p Suppresses ox-LDL-Stimulated Calcification of Vascular Smooth Muscle Cells by Targeting METTL3. Cardiovasc Toxicol 21, 737–746 (2021). https://doi.org/10.1007/s12012-021-09663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09663-0

Keywords

Navigation