Skip to main content

Advertisement

Log in

X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4–3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Reproduced with permission from Ref. [20]

Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Lundin D, Poole AM, Sjöberg B-M, Högbom M (2012) J Biol Chem 287:20565–20575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nordlund P, Eklund H (1995) Curr Opin Struct Biol 5:758–766

    Article  PubMed  CAS  Google Scholar 

  3. Liu X, Theil EC (2005) Acc Chem Res 38:167–175

    Article  PubMed  CAS  Google Scholar 

  4. Nordlund P, Reichard P (2006) Annu Rev Biochem 75:681–706

    Article  PubMed  CAS  Google Scholar 

  5. Wallar BJ, Lipscomb JD (1996) Chem Rev 96:2625–2658

    Article  PubMed  CAS  Google Scholar 

  6. Tinberg CE, Lippard SJ (2011) Acc Chem Res 44:280–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bochevarov AD, Li J, Song WJ, Friesner RA, Lippard SJ (2011) J Am Chem Soc 133:7384–7397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fox BG, Lyle KS, Rogge CE (2004) Acc Chem Res 37:421–429

    Article  PubMed  CAS  Google Scholar 

  9. Choi YS, Zhang H, Brunzelle JS, Nair SK, Zhao H (2008) Proc Natl Acad Sci USA 105:6858–6863

    Article  PubMed  PubMed Central  Google Scholar 

  10. Makris TM, Vu VV, Meier KK, Komor AJ, Rivard BS, Münck E, Que L, Lipscomb JD (2015) J Am Chem Soc 137:1608–1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Krebs C, Bollinger JM, Booker SJ (2011) Curr Opin Chem Biol 15:291–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Das D, Eser BE, Han J, Sciore A, Marsh ENG (2011) Angew Chem Int Ed 50:7148–7152

    Article  CAS  Google Scholar 

  13. Kim YS, Kang KR, Wolff EC, Bell JK, McPhie P, Park MH (2006) J Biol Chem 281:13217–13225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Park MH (2006) J Biochem 139:161–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Saini P, Eyler DE, Green R, Dever TE (2009) Nature 459:118–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gutierrez E, Shin B-S, Woolstenhulme CJ, Kim J-R, Saini P, Buskirk AR, Dever TE (2013) Mol Cell 51:35–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Amino Acids 38:491–500

    Article  PubMed  CAS  Google Scholar 

  18. Kaiser A (2012) Amino Acids 42:679–684

    Article  PubMed  CAS  Google Scholar 

  19. Greganova E, Altmann M, Bütikofer P (2011) FEBS J 278:2613–2624

    Article  PubMed  CAS  Google Scholar 

  20. Vu VV, Emerson JP, Martinho M, Kim YS, Münck E, Park MH, Que L (2009) Proc Natl Acad Sci USA 106:14814–14819

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu KE, Valentine AM, Wang D, Huynh BH, Edmondson DE, Salifoglou A, Lippard SJ (1995) J Am Chem Soc 117:10174–10185

    Article  CAS  Google Scholar 

  22. Bollinger JM, Krebs C, Vicol A, Chen S, Ley BA, Edmondson DE, Huynh BH (1998) J Am Chem Soc 120:1094–1095

    Article  CAS  Google Scholar 

  23. Baldwin J, Krebs C, Saleh L, Stelling M, Huynh BH, Bollinger JM, Riggs-Gelasco P (2003) Biochemistry 42:13269–13279

    Article  PubMed  CAS  Google Scholar 

  24. Moënne-Loccoz P, Baldwin J, Ley BA, Loehr TM, Bollinger JM (1998) Biochemistry 37:14659–14663

    Article  PubMed  Google Scholar 

  25. Skulan AJ, Brunold TC, Baldwin J, Saleh L, Bollinger JM, Solomon EI (2004) J Am Chem Soc 126:8842–8855

    Article  PubMed  CAS  Google Scholar 

  26. Krebs C, Bollinger JM, Theil EC, Huynh BH (2002) J Biol Inorg Chem 7:863–869

    Article  PubMed  CAS  Google Scholar 

  27. Broadwater JA, Ai J, Loehr TM, Sanders-Loehr J, Fox BG (1998) Biochemistry 37:14664–14671

    Article  PubMed  CAS  Google Scholar 

  28. Broadwater JA, Achim C, Münck E, Fox BG (1999) Biochemistry 38:12197–12204

    Article  PubMed  CAS  Google Scholar 

  29. Hwang J, Krebs C, Huynh BH, Edmondson DE, Theil EC, Penner-Hahn JE (2000) Science 287:122–125

    Article  PubMed  CAS  Google Scholar 

  30. Pereira AS, Small W, Krebs C, Tavares P, Edmondson DE, Theil EC, Huynh BH (1998) Biochemistry 37:9871–9876

    Article  PubMed  CAS  Google Scholar 

  31. Solomon EI, Park, K (2016) J Biol Inorg Chem. doi:10.1007/s00775-016-1372-9

    PubMed  Google Scholar 

  32. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–350

    Article  PubMed  CAS  Google Scholar 

  33. Liu KE, Wang D, Huynh BH, Edmondson DE, Salifoglou A, Lippard SJ (1994) J Am Chem Soc 116:7465–7466

    Article  CAS  Google Scholar 

  34. Korboukh VK, Li N, Barr EW, Bollinger JM, Krebs C (2009) J Am Chem Soc 131:13608–13609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Murray LJ, Naik SG, Ortillo DO, García-Serres R, Lee JK, Huynh BH, Lippard SJ (2007) J Am Chem Soc 129:14500–14510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Han Z, Sakai N, Böttger LH, Klinke S, Hauber J, Trautwein AX, Hilgenfeld R (2015) Structure 23:882–892

    Article  PubMed  CAS  Google Scholar 

  37. Rudd DJ, Sazinsky MH, Lippard SJ, Hedman B, Hodgson KO (2005) Inorg Chem 44:4546–4554

    Article  PubMed  CAS  Google Scholar 

  38. Shu L, Nesheim JC, Kauffmann K, Münck E, Lipscomb JD, Que L (1997) Science 275:515–518

    Article  PubMed  CAS  Google Scholar 

  39. Rudd DJ, Sazinsky MH, Merkx M, Lippard SJ, Hedman B, Hodgson KO (2004) Inorg Chem 43:4579–4589

    Article  PubMed  CAS  Google Scholar 

  40. Shu L, Liu Y, Lipscomb JD, Que L Jr (1996) J Biol Inorg Chem 1:297–304

    Article  CAS  Google Scholar 

  41. Dassama LMK, Silakov A, Krest CM, Calixto JC, Krebs C, Bollinger JM, Green MT (2013) J Am Chem Soc 135:16758–16761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Griese JJ, Kositzki R, Schrapers P, Branca RMM, Nordström A, Lehtiö J, Haumann M, Högbom M (2015) J Biol Chem 290:25254–25272

    Article  PubMed  CAS  Google Scholar 

  43. Colpas GJ, Maroney MJ, Bagyinka C, Kumar M, Willis WS, Suib SL, Mascharak PK, Baidya N (1991) Inorg Chem 30:920–928

    Article  CAS  Google Scholar 

  44. Wirt MD, Sagi I, Chen E, Frisbie SM, Lee R, Chance MR (1991) J Am Chem Soc 113:5299–5304

    Article  CAS  Google Scholar 

  45. Penner-Hahn JE, Fronko RM, Pecoraro VL, Yocum CF, Betts SD, Bowlby NR (1990) J Am Chem Soc 112:2549–2557

    Article  CAS  Google Scholar 

  46. Rudd DJ, Goldsmith CR, Cole AP, Stack TDP, Hodgson KO, Hedman B (2005) Inorg Chem 44:1221–1229

    Article  PubMed  CAS  Google Scholar 

  47. de Groot F (2001) Chem Rev 101:1779–1808

    Article  PubMed  CAS  Google Scholar 

  48. Sarangi R (2013) Coord Chem Rev 257:459–472

    Article  PubMed  CAS  Google Scholar 

  49. Randall CR, Shu L, Chiou Y-M, Hagen KS, Ito M, Kitajima N, Lachicotte RJ, Zang Y, Que L (1995) Inorg Chem 34:1036–1039

    Article  CAS  Google Scholar 

  50. Cranswick MA, Meier KK, Shan X, Stubna A, Kaizer J, Mehn MP, Münck E, Que L (2012) Inorg Chem 51:10417–10426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pap JS, Cranswick MA, Balogh-Hergovich E, Baráth G, Giorgi M, Rohde GT, Kaizer J, Speier G, Que L (2013) Eur J Inorg Chem 2013:3858–3866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Frisch JR, Vu VV, Martinho M, Münck E, Que L (2009) Inorg Chem 48:8325–8336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 119:6297–6314

    Article  CAS  Google Scholar 

  54. Carson EC, Lippard SJ (2006) Inorg Chem 45:837–848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ou C-C, Lalancette RA, Potenza JA, Schugar HJ (1978) J Am Chem Soc 100:2053–2057

    Article  CAS  Google Scholar 

  56. Schmitt W, Murugesu M, Goodwin JC, Hill JP, Mandel A, Bhalla R, Anson CE, Heath SL, Powell AK (2001) Polyhedron 20:1687–1697

    Article  CAS  Google Scholar 

  57. Thich JA, Ou CC, Powers D, Vasiliou B, Mastropaolo D, Potenza JA, Schugar HJ (1976) J Am Chem Soc 98:1425–1433

    Article  CAS  Google Scholar 

  58. Yoon S, Lippard SJ (2004) J Am Chem Soc 126:2666–2667

    Article  PubMed  CAS  Google Scholar 

  59. Makhlynets OV, Oloo WN, Moroz YS, Belaya IG, Palluccio TD, Filatov AS, Müller P, Cranswick MA, Que L, Rybak-Akimova EV (2014) Chem Commun 50:645–648

    Article  CAS  Google Scholar 

  60. Yoon S, Lippard SJ (2005) J Am Chem Soc 127:8386–8397

    Article  PubMed  CAS  Google Scholar 

  61. Makris TM, Knoot CJ, Wilmot CM, Lipscomb JD (2013) Biochemistry 52:6662–6671

    Article  PubMed  CAS  Google Scholar 

  62. Whittington DA, Lippard SJ (2001) J Am Chem Soc 123:827–838

    Article  PubMed  CAS  Google Scholar 

  63. Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Protein Sci 6:556–568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Logan DT, Su XD, Aberg A, Regnstrom K, Hajdu J, Eklund H, Nordlund P (1996) Structure 4:1053–1064

    Article  PubMed  CAS  Google Scholar 

  65. Eriksson M, Jordan A, Eklund H (1998) Biochemistry 37:13359–13369

    Article  PubMed  CAS  Google Scholar 

  66. Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) EMBO J 15:4081–4092

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Holmes MA, Le Trong I, Turley S, Sieker LC, Stenkamp RE (1991) J Mol Biol 218:583–593

    Article  PubMed  CAS  Google Scholar 

  68. Holmes MA, Stenkamp RE (1991) J Mol Biol 220:723–737

    Article  PubMed  CAS  Google Scholar 

  69. Dong Y, Yan S, Young VG, Que L (1996) Angew Chem Int Ed 35:618–620

    Article  CAS  Google Scholar 

  70. Ookubo T, Sugimoto H, Nagayama T, Masuda H, Sato T, Tanaka K, Maeda Y, Ōkawa H, Hayashi Y, Uehara A, Suzuki M (1996) J Am Chem Soc 118:701–702

    Article  CAS  Google Scholar 

  71. Kim K, Lippard SJ (1996) J Am Chem Soc 118:4914–4915

    Article  CAS  Google Scholar 

  72. Riggs-Gelasco PJ, Shu L, Chen S, Burdi D, Huynh BH, Que L, Stubbe J (1998) J Am Chem Soc 120:849–860

    Article  CAS  Google Scholar 

  73. Korendovych IV, Kryatov SV, Reiff WM, Rybak-Akimova EV (2005) Inorg Chem 44:8656–8658

    Article  PubMed  CAS  Google Scholar 

  74. Kryatov SV, Taktak S, Korendovych IV, Rybak-Akimova EV, Kaizer J, Torelli S, Shan X, Mandal S, MacMurdo VL (2005) Mairata i Payeras A, Que L. Inorg Chem 44:85–99

    Article  PubMed  CAS  Google Scholar 

  75. Chaudhury P, Wieghardt K, Nuber B, Weiss J (1985) Angew Chem Int Ed 24:778–779

    Article  Google Scholar 

  76. Yoon S, Lippard SJ (2004) J Am Chem Soc 126:16692–16693

    Article  PubMed  CAS  Google Scholar 

  77. Yoon S, Kelly AE, Lippard SJ (2004) Polyhedron 23:2805–2812

    Article  CAS  Google Scholar 

  78. Mitra M, Lloret-Fillol J, Haukka M, Costas M, Nordlander E (2014) Chem Commun 50:1408–1410

    Article  CAS  Google Scholar 

  79. Widger LR, Siegler MA, Goldberg DP (2013) Polyhedron 58:179–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang Z-T, Cheng X-L (2005) Acta Crystallogr C 61:m529–m531

    Article  PubMed  CAS  Google Scholar 

  81. Liang Y, Li W, Guo B-J (2005) Acta Crystallogr Sect E Struct Reports Online 61:m1782–m1784

    Article  CAS  Google Scholar 

  82. Galet A, Muñoz MC, Agustí G, Martínez V, Gaspar AB, Real JA (2005) Z Anorg Allg Chem 631:2092–2095

    Article  CAS  Google Scholar 

  83. Turowski PN, Armstrong WH, Liu S, Brown SN, Lippard SJ (1994) Inorg Chem 33:636–645

    Article  CAS  Google Scholar 

  84. Zhang X, Furutachi H, Fujinami S, Nagatomo S, Maeda Y, Watanabe Y, Kitagawa T, Suzuki M (2005) J Am Chem Soc 127:826–827

    Article  PubMed  CAS  Google Scholar 

  85. Shakya R, Powell DR, Houser RP (2009) Eur J Inorg Chem 2009:5319–5327

    Article  CAS  Google Scholar 

  86. Jozwiuk A, Ingram AL, Powell DR, Moubaraki B, Chilton NF, Murray KS, Houser RP (2014) Dalton Trans 43:9740–9753

    Article  PubMed  CAS  Google Scholar 

  87. Hazell A, Jensen KB, McKenzie CJ, Toftlund H (1994) Inorg Chem 33:3127–3134

    Article  CAS  Google Scholar 

  88. Dong Y, Fujii H, Hendrich MP, Leising RA, Pan G, Randall CR, Wilkinson EC, Zang Y, Que L (1995) J Am Chem Soc 117:2778–2792

    Article  CAS  Google Scholar 

  89. Ogo S, Wada S, Watanabe Y, Iwase M, Wada A, Harata M, Jitsukawa K, Masuda H, Einaga H (1998) Angew Chem Int Ed 37:2102–2104

    Article  CAS  Google Scholar 

  90. MacBeth CE, Gupta R, Mitchell-Koch KR, Young VG, Lushington GH, Thompson WH, Hendrich MP, Borovik AS (2004) J Am Chem Soc 126:2556–2567

    Article  PubMed  CAS  Google Scholar 

  91. Yamashita M, Furutachi H, Tosha T, Fujinami S, Saito W, Maeda Y, Takahashi K, Tanaka K, Kitagawa T, Suzuki M (2007) J Am Chem Soc 129:2–3

    Article  PubMed  CAS  Google Scholar 

  92. Celenligil-Cetin R, Paraskevopoulou P, Dinda R, Staples RJ, Sinn E, Rath NP, Stavropoulos P (2008) Inorg Chem 47:1165–1172

    Article  PubMed  CAS  Google Scholar 

  93. Mukherjee J, Lucas RL, Zart MK, Powell DR, Day VW, Borovik AS (2008) Inorg Chem 47:5780–5786

    Article  PubMed  CAS  Google Scholar 

  94. Majumdar A, Lippard SJ (2013) Inorg Chem 52:13292–13294

    Article  PubMed  CAS  Google Scholar 

  95. Majumdar A, Apfel U-P, Jiang Y, Moënne-Loccoz P, Lippard SJ (2014) Inorg Chem 53:167–181

    Article  PubMed  CAS  Google Scholar 

  96. Armstrong WH, Lippard SJ (1984) J Am Chem Soc 106:4632–4633

    Article  CAS  Google Scholar 

  97. DeWitt JG, Bentsen JG, Rosenzweig AC, Hedman B, Green J, Pilkington S, Papaefthymiou GC, Dalton H, Hodgson KO, Lippard SJ (1991) J Am Chem Soc 113:9219–9235

    Article  CAS  Google Scholar 

  98. Scarrow RC, Maroney MJ, Palmer SM, Que L, Roe AL, Salowe SP, Stubbe J (1987) J Am Chem Soc 109:7857–7864

    Article  CAS  Google Scholar 

  99. Vu VV, Makris TM, Lipscomb JD, Que L (2011) J Am Chem Soc 133:6938–6941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cramer SP, Hodgson KO, Stiefel EI, Newton WE (1978) J Am Chem Soc 100:2748–2761

    Article  CAS  Google Scholar 

  101. Sousa CM, Carpentier P, Matias PM, Testa F, Pinho F, Sarti P, Giuffrè A, Bandeiras TM, Romão CV (2015) Acta Crystallogr D Biol Crystallogr 71:2236–2247

    Article  PubMed  CAS  Google Scholar 

  102. Gudmundsson M, Kim S, Wu M, Ishida T, Momeni MH, Vaaje-Kolstad G, Lundberg D, Royant A, Ståhlberg J, Eijsink VGH, Beckham GT, Sandgren M (2014) J Biol Chem 289:18782–18792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sigfridsson KGV, Chernev P, Leidel N, Popovic-Bijelic A, Gräslund A, Haumann M (2013) J Biol Chem 288:9648–9661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, Zhou M (2015) Nature 524:252–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ (1995) Chem Biol 2:409–418

    Article  CAS  Google Scholar 

  106. Nordlund P, Eklund H (1993) J Mol Biol 232:123–164

    Article  PubMed  CAS  Google Scholar 

  107. Guy JE, Whittle E, Kumaran D, Lindqvist Y, Shanklin J (2007) J Biol Chem 282:19863–19871

    Article  PubMed  CAS  Google Scholar 

  108. Shu L, Broadwater JA, Achim C, Fox BG, Münck E, Que L Jr (1998) J Biol Inorg Chem 3:392–400

    Article  CAS  Google Scholar 

  109. Rardin RL, Tolman WB, Lippard SJ (1991) New J Chem 15:417–430

    CAS  Google Scholar 

  110. Banerjee R, Proshlyakov Y, Lipscomb JD, Proshlyakov DA (2015) Nature 518:431–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG (1994) Proteins 19:302–309

    Article  PubMed  CAS  Google Scholar 

  112. Kitajima N, Fujisawa K, Fujimoto C, Morooka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  113. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    Article  PubMed  CAS  Google Scholar 

  114. Funahashi Y, Nishikawa T, Wasada-Tsutsui Y, Kajita Y, Yamaguchi S, Arii H, Ozawa T, Jitsukawa K, Tosha T, Hirota S, Kitagawa T, Masuda H (2008) J Am Chem Soc 130:16444–16445

    Article  PubMed  CAS  Google Scholar 

  115. Xue G, Fiedler AT, Martinho M, Munck E, Que L (2008) Proc Natl Acad Sci 105:20615–20620

    Article  PubMed Central  Google Scholar 

  116. Xue G, Geng C, Ye S, Fiedler AT, Neese F, Que L (2013) Inorg Chem 52:3976–3984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Xue G, De Hont R, Münck E, Que L (2010) Nat Chem 2:400–405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Siegbahn PEM, Crabtree RH (1997) J Am Chem Soc 119:3103–3113

    Article  CAS  Google Scholar 

  119. Rinaldo D, Philipp DM, Lippard SJ, Friesner RA (2007) J Am Chem Soc 129:3135–3147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Moënne-Loccoz P, Krebs C, Herlihy K, Edmondson DE, Theil EC, Huynh BH, Loehr TM (1999) Biochemistry 38:5290–5295

    Article  PubMed  Google Scholar 

  121. Murray LJ, García-Serres R, Naik S, Huynh BH, Lippard SJ (2006) J Am Chem Soc 128:7458–7459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Park JH, Dias CAO, Lee SB, Valentini SR, Sokabe M, Fraser CS, Park MH (2011) Protein Eng Des Sel 24:301–309

    Article  PubMed  CAS  Google Scholar 

  123. George GN (1990) EXAFSPAK: A suite of computer programs for analysis of X-ray absorption spectra. http://ssrl.slac.stanford.edu/exafspak.html. Accessed 28 June 2016

  124. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565–7576

    Article  CAS  Google Scholar 

  125. Wojdyr M (2010) J Appl Crystallogr 43:1126–1128

    Article  CAS  Google Scholar 

  126. Knoot CJ, Kovaleva EG, Lipscomb JD (2016) J Biol Inorg Chem. doi:10.1007/s00775-016-1363-x

    PubMed  Google Scholar 

  127. Komor AJ, Rivard BS, Fan R, Guo Y, Que L Jr, Lipscomb JD (2016) J Am Chem Soc 138:7411–7421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant GM-38767 to L. Q. and postdoctoral fellowship 5F32GM106612-02 to L. M. E. and by the Intramural Research Program of the National Institute of Dental and Craniofacial Research. V. V. V. is grateful to the Vietnam Education Foundation for providing him with a predoctoral fellowship. XAS data were collected on Beamline 7–3 at the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory and at Beamline X3B of the National Synchrotron Light Source (NSLS). SLAC is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of Beamline 7–3 is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). NSLS is a DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886. We thank Dr. Caleb Allpress for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Que Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasniewski, A.J., Engstrom, L.M., Vu, V.V. et al. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 21, 605–618 (2016). https://doi.org/10.1007/s00775-016-1373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1373-8

Keywords

Navigation