Skip to main content
Log in

Hyperfine interactions and electron distribution in FeIIFeI and FeIFeI models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin FeI

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mössbauer studies of [{μ-S(CH2C(CH3)2CH2S}(μ-CO)FeIIFeI(PMe3)2(CO)3]PF6 (1 OX ), a model complex for the oxidized state of the [FeFe] hydrogenases, and the parent FeIFeI derivative are reported. The paramagnetic 1 OX is part of a series featuring a dimethylpropanedithiolate bridge, introducing steric hindrance with profound impact on the electronic structure of the diiron complex. Well-resolved spectra of 1 OX allow determination of the magnetic hyperfine couplings for the low-spin distal FeI (\( {\text{Fe}}^{\text{I}} _{\text{ D}} \)) site, A x,y,z  = [−24 (6), −12 (2), 20 (2)] MHz, and the detection of significant internal fields (approximately 2.3 T) at the low-spin ferrous site, confirmed by density functional theory (DFT) calculations. Mössbauer spectra of 1 OX show nonequivalent sites and no evidence of delocalization up to 200 K. Insight from the experimental hyperfine tensors of the FeI site is used in correlation with DFT to reveal the spatial distribution of metal orbitals. The Fe–Fe bond in [Fe2{μ-S(CH2C(CH3)2CH2S}(PMe3)2(CO)4] (1) involving two \( d_{{z^{2} }} \)-type orbitals is crucial in keeping the structure intact in the presence of strain. On oxidation, the distal iron site is not restricted by the Fe–Fe bond, and thus the more stable isomer results from inversion of the square pyramid, rotating the \( d_{{z^{2} }} \) orbital of \( {\text{Fe}}^{\text{I}} _{\text{ D}} \). DFT calculations imply that the Mössbauer properties can be traced to this \( d_{{z^{2} }} \) orbital. The structure of the magnetic hyperfine coupling tensor, A, of the low-spin FeI in 1 OX is discussed in the context of the known A tensors for the oxidized states of the [FeFe] hydrogenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. All cited isomer shifts were adjusted to values at 5 K.

  2. Signs are determined by Mössbauer spectroscopy.

Abbreviations

DFT:

Density functional theory

ENDOR:

Electron–nuclear double resonance

EFG:

Electric field gradient

FeD :

Distal iron

FeP :

Proximal iron

HYSCORE:

Hyperfine sublevel correlation

PES:

Potential energy surface

SCF:

Self-consistent field

TD:

Time dependent

References

  1. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7(1):13–23

    Article  PubMed  CAS  Google Scholar 

  2. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  3. Gutlich P, Bill E, Trautwein AX (2011) Mossbauer spectroscopy and transition metal chemistry. Springer, Berlin

    Book  Google Scholar 

  4. Pereira AS, Tavares P, Moura JJGM, Huynh BH (2001) J Am Chem Soc 123:2771–2782

    Article  PubMed  CAS  Google Scholar 

  5. Popescu CV, Münck E (1999) J Am Chem Soc 121:7877–7884

    Article  CAS  Google Scholar 

  6. Silakov A, Reijerse EJ, Albracht SP, Hatchikian CE, Lubitz W (2007) J Am Chem Soc 129(37):11447–11458

    Article  PubMed  CAS  Google Scholar 

  7. Silakov A, Reijerse EJ, Lubitz W (2011) Eur J Inorg Chem 7:1056–1066

    Article  Google Scholar 

  8. Erdem ÖF, Schwartz L, Stein M, Silakov A, Kaur-Ghumaan S, Huang P, Ott S, Reijerse EJ, Lubitz W (2011) Angew Chem Int Ed 50(6):1439–1443

    Article  CAS  Google Scholar 

  9. Silakov A, Shaw JL, Reijerse EJ, Lubitz W (2010) J Am Chem Soc 132(49):17578–17587

    Article  PubMed  CAS  Google Scholar 

  10. Silakov A, Olsen MT, Sproules S, Reijerse EJ, Rauchfuss TB, Lubitz W (2012) Inorg Chem 51:8617–8628

    Article  PubMed  CAS  Google Scholar 

  11. Singleton ML, Bhuvanesh N, Reibenspies JH, Darensbourg MY (2008) Angew Chem Int Ed 47:9492–9495

    Article  CAS  Google Scholar 

  12. Pandey AS, Harris TV, Giles LJ, Peters JW, Szilagy RK (2008) J Am Chem Soc 130:4533–4540

    Article  PubMed  CAS  Google Scholar 

  13. Rusnak FM, Adams MWW, Mortenson LE, Munck E (1987) J Biol Chem 262:38–41

    PubMed  CAS  Google Scholar 

  14. Adams MWW (1987) J Biol Chem 259:15054

    Google Scholar 

  15. Adams MWW, Mortenson LE (1984) J Biol Chem 259:7045

    PubMed  CAS  Google Scholar 

  16. Zambrano IC, Kowal AT, Mortenson LE, Adams MWW (1989) J Biol Chem 264:20974

    PubMed  CAS  Google Scholar 

  17. Telser J, Benecky MJ, Adams MWW, Mortenson LE, Hoffman BM (1987) J Biol Chem 262:6589–6594

    PubMed  CAS  Google Scholar 

  18. Adams MWW (1990) Biochim Biophys Acta 1020:115

    Article  PubMed  CAS  Google Scholar 

  19. Tard C, Liu X, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, Yang X, Wang L-S, Sawers G, Pickett CJ (2005) Nature 433:610–613

    Article  PubMed  CAS  Google Scholar 

  20. Lawrence JD, Li H, Rauchfuss TB, Benard M, Rohmer M (2001) Angew Chem Int Ed 2001:1818–1821

    Google Scholar 

  21. Le Cloirec A, Best SP, Borg S, Davies SC, Evans DJ, Hughes DL, Pickett CJ (1999) Chem Commun 2285–2286

  22. Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (1999) Angew Chem Int Ed 38:3178–3180

    Article  CAS  Google Scholar 

  23. Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (2001) J Am Chem Soc 123:3268–3278

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt M, Contakes SM, Rauchfuss TB (1999) J Am Chem Soc 121:9736–9737

    Article  CAS  Google Scholar 

  25. Barton BE, Rauchfuss TB (2008) Inorg Chem 2008:2261–2263

    Article  Google Scholar 

  26. Olsen MT, Rauchfuss TB, Wilson SR (2010) J Am Chem Soc 132(50):17733

    Article  PubMed  CAS  Google Scholar 

  27. Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP (2003) Proc Natl Acad Sci USA 100:3683

    Article  PubMed  CAS  Google Scholar 

  28. Lemon B, Peters JW (1999) Biochemistry 38:12969–12973

    Article  PubMed  CAS  Google Scholar 

  29. Apfel U-P, Troegel D, Halpin Y, Tschierlei S, Uhlemann U, Gorls H, Schmitt M, Popp J, Dunne P, Venkatesan M, Coey M, Rudolph M, Vos JG, Tacke R, Weigand W (2010) Inorg Chem 49(21):10117

    Article  PubMed  CAS  Google Scholar 

  30. Razavet M, Davies SC, Hughes DL, Barclay JE, Evans DJ, Fairhurst SA, Liu X, Pickett CJ (2003) Dalton Trans 586

  31. Lee Y, Kinney RA, Hoffman BM, Peters JC (2011) J Am Chem Soc 133(41):16366

    Article  PubMed  CAS  Google Scholar 

  32. Lee Y, Peters JC (2011) J Am Chem Soc 133:4438–4446

    Article  PubMed  CAS  Google Scholar 

  33. Justice AK, De Gioia L, Nilges MJ, Rauchfuss TB, Wilson SR, Zampella G (2008) Inorg Chem 47(16):7405–7414

    Article  PubMed  CAS  Google Scholar 

  34. Liu T, Darensbourg MY (2007) J Am Chem Soc 129(22):7008–7009

    Article  PubMed  CAS  Google Scholar 

  35. Hsieh C-H, Erdem OF, Harman S, Singleton ML, Reijersee E, Lubitz W, Popescu CV, Reibenspies JH, Brothers S, Hall MB, Darensbourg MY (2012) J Am Chem Soc 134:13089–13102

    Article  CAS  Google Scholar 

  36. Münck E (2000) Physical Methods in Bioinorganic Chemistry. In: Que L Jr (ed) University Science Books, Sausalito, California pp 287–320

  37. Neese F (2002) Inorg Chim Acta 337:181–192

    Article  Google Scholar 

  38. Neese F (2003) J Chem Phys 118(9):3939–3948

    Article  CAS  Google Scholar 

  39. Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44(7):2245–2254

    Article  PubMed  CAS  Google Scholar 

  40. Stoian SA, Vela J, Smith JM, Sadique AR, Holland PL, Münck E, Bominaar EL (2006) J Am Chem Soc 128(31):10181–10192

    Article  PubMed  CAS  Google Scholar 

  41. Frisch MJ, Trucks GWS, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K; Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, version B01. Gaussian, Wallingford

  42. Vrăjmaşu V, Münck E, Bominaar EL (2003) Inorg Chem 42:5974–5988

    Article  PubMed  Google Scholar 

  43. Stoian SA, Yu Y, Smith JM, Holland PL, Bominaar EL, Münck E (2005) Inorg Chem 44:4915–4922

    Article  PubMed  CAS  Google Scholar 

  44. Popescu CV, Münck E, Fox BG, Sanakis Y, Cummings J, Turner IM, Nelson MJ (2001) Biochemistry 40:7984–7991

    Article  PubMed  CAS  Google Scholar 

  45. Parish RV (1978) Org Chem Iron 1:175–211

    Article  CAS  Google Scholar 

  46. Andersen EL, Fehlner TP, Foti DR, Salahub DR (1980) J Am Chem Soc 102:7422–7429

    Article  CAS  Google Scholar 

  47. Fiedler AT, Brunold TC (2005) Inorg Chem 44:1794–1809

    Article  PubMed  CAS  Google Scholar 

  48. Teo BK, Hall MB, Fenske RB, Dahl LF (1975) Inorg Chem 3103–3117

  49. Zhu W, Marr AC, Wang Q, Neese F, Spencer DJE, Blake AJ, Cooke PA, Wilson C, Schroder M (2005) Proc Natl Acad Sci USA 102:18280–18285

    Article  PubMed  CAS  Google Scholar 

  50. Tye JW, Darensbourg MY, Hall MB (2006) Inorg Chem 45:1552–1559

    Article  PubMed  CAS  Google Scholar 

  51. Schilter D, Nilges MJ, Chakrabarti M, Lindahl PA, Rauchfuss TB, Stein M (2012) Inorg Chem 51:2338–2351

    Article  PubMed  CAS  Google Scholar 

  52. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Chem Rev 107(10):4273–4303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.V.P. is grateful to Eckard Münck for support and discussions, and for allowing her to use his laboratory to collect spectra and train undergraduate students. C.V.P. thanks Alex Guo and Katlyn Meier for their help and acknowledges the Ursinus College Faculty Development and Summer Fellows programs. The authors acknowledge the reviewers for the useful comments and suggestions for improvement during the review process. Funding for this research was provided by the National Science Foundation (CHE-0956779 to C.V.P., CHE-0910679 to M.Y.D.). S.A.S. acknowledges grant CHE-1012485 to E. Münck. M.Y.D. acknowledges the Welch Foundation (A-0924 to M.Y.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Codrina V. Popescu.

Electronic supplementary material

The electronic supplementary material contains views of the unit cell of 1, calculated EFG components for conformers of 1, DFT-calculated metric parameters and the optimized geometries of compounds 1 and 1 OX , tabulated experimental and calculated values for components of the A tensors (57Fe and 31P) and visualization of the 57Fe EFG and A tensors for 1 OX , and tabulated gross orbital populations and spin densities of 1 OX .

This material is available free of charge via http://www.chem.umn.edu/jbic/.

Supporting Information (PDF 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoian, S.A., Hsieh, CH., Singleton, M.L. et al. Hyperfine interactions and electron distribution in FeIIFeI and FeIFeI models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin FeI . J Biol Inorg Chem 18, 609–622 (2013). https://doi.org/10.1007/s00775-013-1005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1005-5

Keywords

Navigation