Skip to main content
Log in

Features of chemical bonding within the Fe(NO)2 fragment for crystalline bis(thiosulfate) tetranitrosyl diiron tetramethylammonium salt as an example according to high-resolution X-ray diffraction data

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Results of the study of the experimental charge density function for a crystal of the watersoluble {(СH3)4N+}2[Fe2(S2O3)2(NO)4] iron complex are presented. An inequality of two NO ligands at the same metal atom follows from the results of topological analysis of the charge density reconstructed particularly by using the “invariom” model. The inequality also reproduces that in the earlier studied complex Fe(SC2H3N3)(SC2H2N3)(NO)2]•0.5H2O, which is not caused by a superposition of spin states. Crystal packing analysis demonstrates the absence of a significant influence of solvation effects on the observed features of chemical bonding in the Fe(NO)2 fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nitric Oxide: Biology and Pathobiology, Ed. L. J. Ignarro, Academic Press, San Diego, 2000.

  2. S. M. Aldoshin, K. A. Lyssenko, M. Yu. Antipin, N. A. Sanina, V. V. Gritsenko, J. Mol. Struct., 2008, 875, 309.

    Article  CAS  Google Scholar 

  3. G. Schenk, M. Y. M. Pau, E. I. Solomon, J. Am. Chem. Soc., 2004, 126, 505.

    Article  CAS  Google Scholar 

  4. A. F. Shestakov, Yu. M. Shula, N. S. Emelýanova, N. A. Sanina, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 761 [Izv. Akad. Nauk, Ser. Khim., 2007, 1244].

    Article  Google Scholar 

  5. A. F. Shestakov, Yu. M. Shula, N. S. Emelýanova, N. A. Sanina, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2006, 55, 2133 [Izv. Akad. Nauk, Ser. Khim., 2006, 2053].

    Article  CAS  Google Scholar 

  6. A. F. Shestakov, Yu. M. Shula, N. S. Emelýanova, N. A. Sanina, T. N. Roudneva, S. M. Aldoshin, V. N. Ikorskii, V. I. Ovcharenko, Inorg. Chim. Acta, 2009, 362, 2499.

    Article  CAS  Google Scholar 

  7. S. M. Brothers, M. Y. Darensbourg, M. B. Hall, Inorg. Chem., 2011, 50, 8532.

    Article  CAS  Google Scholar 

  8. Tsai-Te Lu, Szu-Hsueh Lai, Ya-Wen Li, I-Jui Hsu, LingYun Jang, Jyh-Fu Lee, I-Chia Chen, Wen-Feng Liaw, Inorg. Chem., 2011, 50, 5396.

    Article  CAS  Google Scholar 

  9. G. M. Sandala, K. H. Hopmann, A. Ghosh, L. Noodleman, J. Chem. Theory Comput., 2011, 7, 3232.

    Article  CAS  Google Scholar 

  10. S. M. Aldoshin, E. B. Feldman, M. A. Yurishchev, JETP, 2008, 107, 804 [Zh. Eksp. Teor. Fiz., 2008, 134, 940].

    Article  CAS  Google Scholar 

  11. S. M. Aldoshin, R. B. Morgunov, A. V. Palii, N. Yu. Shmatko, N. A. Sanina, Applied Magnetic Resonance, 2015, in press.

    Google Scholar 

  12. RU Pat. 2429242 C2, 2011.

  13. US Pat. 8067628 B2, 2011.

  14. RU Pat. 2460531 C2, 2012.

  15. N. A. Sanina, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2011, 60, 1223 [Izv. Akad. Nauk, Ser. Khim., 2011, 1199].

    Article  CAS  Google Scholar 

  16. N. A. Sanina, I. I. Chuev, S. M. Aldoshin, N. S. Ovanesyan, V. V. Strelets, Yu. V. Geletii, Russ. Chem. Bull. (Int. Ed.), 2000, 49, 444 [Izv. Akad. Nauk, Ser. Khim., 2000, 443].

    Article  CAS  Google Scholar 

  17. RU Pat. 2437667 C1, 2011.

  18. L. V. Tatýanenko, O. V. Dobrokhotova, A. I. Kotelńikov, N. A. Sanina, G. I. Kozub, T. A. Kondratéva, S. M. Aldoshin, Khim.-Farm. Zh. [Chemical Pharmaceutical Journal], 2013, 47, 65 (in Russian).

    Google Scholar 

  19. N. A. Sanina, O. A. Rakova, S. M. Aldoshin, I. I. Chuev, E. G. Atovmyan, N. S. Ovanesyan, Russ. J. Coord. Chem., 2001, 27, 198.

    Article  Google Scholar 

  20. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, A64, 112.

    Article  Google Scholar 

  21. A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. Mallinson, T. Richter, T. Koritsanszky, XD2006–A Computer Program Package for Multipole Refinement, Topological Analysis of Charge Densities and Evaluation of Intermolecular Energies from Experimental and Theoretical Structure Factors, 2006.

    Google Scholar 

  22. D. Birger, T. Koritsanszky, P. Luger, Angew. Chem., Int. Ed., 2004, 43, 2718.

    Article  Google Scholar 

  23. C. B. Hubschle, P. Luger, B. Dittrich, J. Appl. Cryst., 2007, 40, 623.

    Article  Google Scholar 

  24. Yu. V. Nelyubina, K. A. Lyssenko, Chem. Eur. J., 2015, 21, 9733.

    Article  CAS  Google Scholar 

  25. D. A. Kirzhnits, Yu. E. Lozovik, G. V. Shpatakovskaya, Usp. Fiz. Nauk, 1975, 117, 3 [Physics-Uspekhi (Engl. Transl.), 1975, 117].

    Article  CAS  Google Scholar 

  26. V. Tsirelson, A. Stash, Chem. Phys. Letts., 2002, 351, 142.

    Article  CAS  Google Scholar 

  27. (a)_A. Stash, V. Tsirelson, WinXPRO, A Program for Calculation of the Crystal and Molecular Properties Using the Model Electron Density, 2001

    Google Scholar 

  28. A. Stash, V. G. Tsirelson, Acta Cryst., 2002, 35, 371.

    CAS  Google Scholar 

  29. H. Lewandowska, M. Kalinowska, K. Brzóska, K. Wójciuk, G. Wójciuk, M. Kruszewski, Dalton Trans., 2011, 40, 8273.

    Article  CAS  Google Scholar 

  30. J. H. Enemark, R. D. Feltham, Coord. Chem. Rev., 1974, 13, 339.

    Article  CAS  Google Scholar 

  31. S. Ye, F. Neese, J. Am. Chem. Soc., 2010, 132, 3646.

    Article  CAS  Google Scholar 

  32. K. Boguslawski, C. R. Jacob, M. Reiher, J. Chem. Theory Comput., 2011, 7, 2740.

    Article  CAS  Google Scholar 

  33. R. F. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, USA, 1994.

  34. Chi-Rung Lee, I-Jui Hsu, Hsu-Teng Chen, Gene-Hsiang Lee, Yu Wang, Pu. R. Chim., 2012, 15, 237.

    Article  CAS  Google Scholar 

  35. S. M. Aldoshin, K. A. Lyssenko, M. Yu. Antipin, N. A. Sanina, V. V. Gritsenko, J. Mol. Struct., 2008, 875, 309.

    Article  CAS  Google Scholar 

  36. O. A. Rakova, N. A. Sanina, G. V. Shilov, V. V. Strelets, I. B. Borzova, A. V. Kulikov, S. M. Aldoshin, Russ. J. Coord. Chem., 2001, 27, 657.

    Article  CAS  Google Scholar 

  37. N. A. Sanina, S. M. Aldoshin, N. Yu. Shmatko, D. V. Korchagin, G. V. Shilov, E. V. Knyazkina, N. S. Ovanesyan, A. V. Kulikov, New. J. Chem., 2015, 39, 1022.

    Article  CAS  Google Scholar 

  38. C. Glidewell, R. J. Lambert, M. B. Hursthouse, M. Motevalli, J. Chem. Soc., Dalton Trans., 1981, 2061.

    Google Scholar 

  39. T. N. Rudneva, N. A. Sanina, K. A. Lyssenko, S. M. Aldoshin, M. Yu. Antipin, N. S. Ovanesyan, Mendeleev Commun., 2009, 19, 253.

    Article  CAS  Google Scholar 

  40. Ruei Jang Dai, Shyne Chu Ke, J. Phys. Chem. B, 2007, 111, 2335.

    Article  CAS  Google Scholar 

  41. V. V. Novikov, I. V. Ananyev, A. A. Pavlov, M. V. Fedin, K. A. Lyssenko, Y. Z. Voloshin, J. Phys. Chem. Lett., 2014, 5, 496.

    Article  CAS  Google Scholar 

  42. A. M. Pendás, E. Francisco, M. A. Blanco, C. Gatti, Chem. Eur. J., 2007, 13.

    Google Scholar 

  43. F. Cortés-Guzmán, R. F. W. Bader, Coord. Chem. Rev., 2005, 249, 633.

    Article  Google Scholar 

  44. S. Shaik, D. Danovich, W. Wu, P. C. Hiberty, Nature Chemistry, 2009, 1, 443.

    Article  CAS  Google Scholar 

  45. A. O. Borissova, A. A. Korlyukov, M. Yu. Antipin, K. A. Lyssenko, J. Phys. Chem. A., 2008, 112, 11519.

    Article  CAS  Google Scholar 

  46. L. N. Puntus, K. A. Lyssenko, M. Yu. Antipin, J.-C. G. Bünzli, Inorg. Chem., 2008, 11095.

  47. I. S. Bushmarinov, K. A. Lyssenko, M. Yu. Antipin, Russ. Chem. Rev., 2009, 78, 283 [Usp. Khim., 2009, 78, 307].

    Article  CAS  Google Scholar 

  48. Yu. V. Neyubina, K. A. Lyssenko, V. Yu. Kotov, M. Yu. Antipin, J. Phys. Chem. A, 2008, 112, 8790.

    Article  Google Scholar 

  49. A. Savin, R. Nesper, S. Wengert, T. Fassler, Angew. Chem., Int. Ed. Engl., 1997, 36, 1809.

    Article  Google Scholar 

  50. I. V. Fedyanin, K. A. Lyssenko, CrystEngComm, 2013, 15, 10086.

    Article  CAS  Google Scholar 

  51. A. Savin, B. Silvi, F. Coionna, Can. J. Chem., 1996, 74, 1088.

    Article  CAS  Google Scholar 

  52. K. A. Lyssenko, Mendeleev Commun., 2012, 22, 1.

    Article  CAS  Google Scholar 

  53. E. Munoz, A. M. Benito, L. C. Estepa, J. Fernandez, Y. Maniette, M. T. Martinez, G. F. de la Fuente, H. Liu, C. M. Silva, E. A. Macedo, E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.

    Article  Google Scholar 

  54. E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett., 2001, 336, 457.

    Article  CAS  Google Scholar 

  55. Yu. V. Nelyubina, M. Yu. Antipin, K. A. Lyssenko, Russ. Chem. Rev., 2010, 79, 167 [Usp. Khim., 2010, 79, 195].

    Article  CAS  Google Scholar 

  56. F. Allen, Acta Crystallogr. Sect. B, 2002, B58, 380. Cambridge Structural Database, release 2014.

    Article  CAS  Google Scholar 

  57. E. Keller, H. Vahrenkamp, Chem. Ber., 1979, 112, 1626. Received May 15, 2015

    Article  CAS  Google Scholar 

  58. Yu. V. Nelyubina, A. A. Korlyukov, I. V. Fedyanin, K. A. Lyssenko, Inorg. Chem., 2013, 52, 14355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sanina.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. L. Buchachenko on the occasion of his 80th anniversary.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2351–2360, October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyssenko, K.A., Ananyev, I.V., Aldoshin, S.M. et al. Features of chemical bonding within the Fe(NO)2 fragment for crystalline bis(thiosulfate) tetranitrosyl diiron tetramethylammonium salt as an example according to high-resolution X-ray diffraction data. Russ Chem Bull 64, 2351–2360 (2015). https://doi.org/10.1007/s11172-015-1163-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-015-1163-4

Keywords

Navigation