Skip to main content
Log in

Structural basis for the decrease in the outward potassium channel current induced by lanthanum

  • Report
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The current of the outward K+ channel in the cell of horseradish treated with La3+ and the direct interaction between La3+ and the K+ channel protein were investigated using the whole-cell patch-clamp technique, molecular dynamics simulation, and quantum chemistry calculation methods. It was found for the first time that La3+ decreases the current of the K+ channel in the horseradish mesophyll cell. The decrease results from the formation of a coordination bond and hydrogen bond between La3+ and the K+ channel protein in the plasma membrane. The direct interaction destroys the native structure of the K+ channel protein, disturbing the function of the K+ channel protein in the cells. The results can provide the theoretical foundation for understanding the interaction between metal ions (especially high-valence metal ions) and the channel protein in organisms, including animal and plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Peacock AFA, Sadler P (2008) Chem Asian J 3:1890–1899

    Article  CAS  PubMed  Google Scholar 

  2. Zhou HY, Wang BS, Guan HZ, Lai YJ, You CF, Wang JL, Yang HJ (2009) Quat Res 72:289–300

    Article  CAS  Google Scholar 

  3. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  4. Wen B, Liu Y, Hu XY, Shan XQ (2006) Chemosphere 63:1179–1186

    Article  CAS  PubMed  Google Scholar 

  5. Kunnemeyer J, Terborg L, Meermann B, Brauckmann C, Scheffer IMA, Karst U (2009) Environ Sci Technol 43:2884–2890

    Article  PubMed  Google Scholar 

  6. Moreno T, Querol X, Alastuey A, Pey J, Minguillon MC, Perez N, Bernabe RM, Blanco S, Cardenas B, Gibbons W (2008) Environ Sci Technol 42:6502–6507

    Article  CAS  PubMed  Google Scholar 

  7. Ding SM, Liang T, Zhang CS, Huang ZC, Xie YN, Chen TB (2006) Environ Sci Technol 40:2686–2691

    Article  CAS  PubMed  Google Scholar 

  8. Binnemans K (2009) Chem Rev 109:4283–4374

    Article  CAS  PubMed  Google Scholar 

  9. Foltyn SR, Civale L, Macmanus-Driscoll JL, Jia QX, Maiorov B, Wang H, Maley M (2007) Nat Mater 6:631–642

    Article  CAS  PubMed  Google Scholar 

  10. Jackson SD (2009) Laser Photonics Rev 3:466–482

    Article  CAS  Google Scholar 

  11. Shaigan N, Ivey DG, Chen WX (2008) J Power Sour 185:331–337

    Article  CAS  Google Scholar 

  12. Barton Pai A, Conner TA, McQuade CR (2009) Expert Opin Drug Met 5:71–81

    Article  CAS  Google Scholar 

  13. Ni JZ (1995) Bioinorganic chemistry of rare earth elements. Science Press, Beijing

    Google Scholar 

  14. Hu Z, Haneklaus S, Sparovek G, Schnug E (2006) Commun Soil Sci Plant Anal 37:1381–1420

    Article  CAS  Google Scholar 

  15. Zhu WF, Xu SQ, Zhang H, Shao PP, Wu DS, Yang WJ, Feng J (1996) Chin Sci Bull 41:1977–1981

    Google Scholar 

  16. Palasz A, Czekaj P (2000) Acta Biochim Pol 47:1107–1114

    CAS  PubMed  Google Scholar 

  17. Zeng Q, Zhu JG, Cheng HL, Xie ZB, Chu HY (2006) Ecotoxicol Environ Saf 64:226–233

    Article  CAS  PubMed  Google Scholar 

  18. Wang LH, Lu AH, Lu TH, Ding XL, Huang XH (2010) Biochimie 92:41–50

    Article  CAS  PubMed  Google Scholar 

  19. Felipe A, Vicente R, Villalonga N, Roura-Ferrer M, Martínez-Mármol R, Solé L, Ferreres J, Condom E (2006) Cancer Detect Prev 30:375–385

    Article  CAS  PubMed  Google Scholar 

  20. Alshuaib WB, Mathew MV (2004) Int J Neurosci 114:639–659

    Article  CAS  PubMed  Google Scholar 

  21. Alshuaib W, Mathew M (2005) Neurochem Res 30:1087–1092

    Article  CAS  PubMed  Google Scholar 

  22. Zhao FG, Song CP, He JQ, Zhu H (2007) Plant Physiol 145:1061–1072

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Ullah H, Jones A, Assmann S (2001) Science 292:2070

    Article  CAS  PubMed  Google Scholar 

  24. Fan L, Wang Y, Wu W (2003) Protoplasma 220:143–152

    Article  CAS  PubMed  Google Scholar 

  25. Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle H, Hedrich R (2001) FEBS Lett 508:463–469

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Walker N, Tyerman S, Patrick J (2000) Planta 211:894–898

    Article  CAS  PubMed  Google Scholar 

  27. Gassmann W, Schroeder J (1994) Plant Physiol 105:1399

    CAS  PubMed  Google Scholar 

  28. Chen Z, Pottosin I, Cuin T, Fuglsang A, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren M, Newman I (2007) Plant Physiol 145:1714

    Article  CAS  PubMed  Google Scholar 

  29. Wang LH, Zhou Q, Lu TH, Ding XL, Huang XH (2010) J Biol Inorg Chem (in press)

  30. Wang SC, Tiwari S, Hagen G, Guilfoyle T (2005) Plant Cell 17:1979

    Article  CAS  PubMed  Google Scholar 

  31. Kovtun Y, Chiu WL, Sheen J (2000) Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed  Google Scholar 

  32. Liu K, Luan S (1998) Plant Cell 10:1957–1970

    Article  CAS  PubMed  Google Scholar 

  33. Rao S, Vijayakrishnan R, Kumar M (2008) Chem Biol Drug Des 72:444–449

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schelegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Pittsburgh

  35. Becke A (1993) Chem Phys 98:5648–5652

    CAS  Google Scholar 

  36. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026–6033

    Article  Google Scholar 

  37. Stevens WJ, Krauss M (1992) Can J Chem 70:612

    Article  CAS  Google Scholar 

  38. Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555–5565

    Article  CAS  Google Scholar 

  39. Catterall A (1995) Annu Rev Biochem 64:493–531

    Article  CAS  PubMed  Google Scholar 

  40. Dreyer I, Blatt MR (2009) Trends Plant Sci 14:383–390

    Article  CAS  PubMed  Google Scholar 

  41. Buchanan B, Gruissem W, Jones R (2000) Biochemistry and molecular biology of plants. Wiley, New York

    Google Scholar 

  42. Limaye SN, Saxena MC (1986) Can J Chem 64:865–870

    Article  CAS  Google Scholar 

  43. Guo SF, Cao R, Lu AH, Zhou Q, Lu TH, Ding XL, Li CJ, Huang XH (2008) J Biol Inorg Chem 13:587–597

    Article  CAS  PubMed  Google Scholar 

  44. Si S, Li C, Wang R, Li Y (2006) J Coord Chem 59:215–222

    Article  CAS  Google Scholar 

  45. Huang C (2010) Rare earth coordination chemistry: fundamentals and application. Wiley, New York

    Book  Google Scholar 

  46. Iwata T, Béhade E, Fukuda K, Masson O, Julien I, Champion E, Thomas P (2008) J Am Ceram Soc 91:3714–3720

    Article  CAS  Google Scholar 

  47. Jiang N, Wang L, Du C, Ding X, Huang X (2010) Environ Chem Lett (in press)

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (20971069; 20471030, 20637010) and the Foundation of State Developing and Reforming Committee (GFZ2071609; IFZ2051210). The authors are grateful to Min Wang (an outstanding specialist in metal alloys) of Nanjing University of Aeronautics and Astronautics, and Chunhui Huang (an academician of the Chinese Academy of Science) of Peking University as their encouragement and valuable instructions have been very helpful in approaching this intriguing topic of interdisciplinary relevance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Hua Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L.H., Jiang, N., Zhao, B. et al. Structural basis for the decrease in the outward potassium channel current induced by lanthanum. J Biol Inorg Chem 15, 989–993 (2010). https://doi.org/10.1007/s00775-010-0688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0688-0

Keywords

Navigation