Skip to main content
Log in

Vanadium compounds discriminate hepatoma and normal hepatic cells by differential regulation of reactive oxygen species

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Our previous study indicated that vanadium compounds can block cell cycle progression at the G1/S phase in human hepatoma HepG2 cells via a highly activated extracellular signal-regulated protein kinase (ERK) signal. To explore their differential action on normal cells, we investigated the response of an immortalized hepatic cell line, L02 cells. The results demonstrated that a higher concentration of vanadium compounds was needed to inhibit L02 proliferation, which was associated with S and G2/M cell cycle arrest. In addition, in contrast to insignificant reactive oxygen species (ROS) generation in HepG2 cells, all of the vanadium compounds resulted significant increases in both O ·−2 and H2O2 levels in L02 cells. At the same time, ERK and c-Jun N-terminal kinase (JNK) as well as cell division control protein 2 homolog (Cdc2) were found to be highly phosphorylated, which could be counteracted with the antioxidant N-acetylcysteine (NAC). The current study also demonstrated that both the ERK and the JNK pathways contributed to the cell cycle arrest induced by vanadium compounds in L02 cells. More importantly, it was found that although NAC can ameliorate the cytotoxicity of vanadium compounds in L02 cells, it did not decrease their cytotoxicity in HepG2 cells. It thus shed light on the potential therapeutic applications of vanadium compounds with antioxidants as synergistic agents to reduce their toxicities in human normal cells without affecting their antitumor activities in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Akt/PKB:

Protein kinase B

Cdc2/Cdk1:

Cell division control protein 2 homolog/cyclin dependent kinase 1

CM-H2DCF-DA:

5-(and-6)-Chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate

ERK:

Extracellular signal-regulated protein kinase

FBS:

Fetal bovine serum

HE:

Dihydroethidium

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MTT:

3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide

NAC:

N-acetylcysteine

NaVO3 :

Sodium metavanadate

PI3-K:

Phosphatidylinositol 3-kinase

pRb:

Retinoblastoma tumor suppressor protein

ROS:

Reactive oxygen species

VO(acac)2 :

Bis(acetylacetonato)-oxovanadium(IV)

VO(ma)2 :

Bis(maltolato)-oxovanadium(IV)

References

  1. Evangelou AM (2002) Crit Rev Oncol Hematol 42:249–265

    Article  PubMed  Google Scholar 

  2. Ress NB, Chou BJ, Renne RA, Dill JA, Miller RA, Roycroft JH, Hailey JR, Haseman JK, Bucher JR (2003) Toxicol Sci 74:287–296

    Article  CAS  PubMed  Google Scholar 

  3. Hwang JT, Lee M, Jung SN, Lee HJ, Kang I, Kim SS, Ha J (2004) Carcinogenesis 25:2497–2507

    Article  CAS  PubMed  Google Scholar 

  4. Tang H, Sun Y, Xiu Q, Lu H, Han H (2007) Arch Biochem Biophys 468:92–99

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Z, Gao N, He H, Huang C, Luo J, Shi X (2004) Mol Cell Biochem 255:227–237

    Article  CAS  PubMed  Google Scholar 

  6. Chien PS, Mak OT, Huang HJ (2006) Biochem Biophys Res Commun 339:562–568

    Article  CAS  PubMed  Google Scholar 

  7. Goc A (2006) Cent Eur J Biol 1:314–332

    Article  CAS  Google Scholar 

  8. Desoize B (2004) Anticancer Res 24:1529–1544

    CAS  PubMed  Google Scholar 

  9. Molinuevo MS, Barrio DA, Cortizo AM, Etcheverry SB (2004) Cancer Chemother Pharm 53:163–172

    Article  CAS  Google Scholar 

  10. Gao N, Ding M, Zheng JZ, Zhang Z, Leonard SS, Liu KJ, Shi X, Jiang BH (2002) J Biol Chem 277:31963–31971

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X (2003) Free Radic Biol Med 34:1333–1342

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X (2001) Arch Biochem Biophys 392:311–320

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Ding W, Baruah B, Crans DC, Wang R (2008) J Inorg Biochem 102:1846–1853

    Article  CAS  PubMed  Google Scholar 

  14. Figiel I, Kaczmarek L (1997) Neuroreport 8:2465–2470

    Article  CAS  PubMed  Google Scholar 

  15. Chin LS, Murray SF, Harter DH, Doherty PF, Singh SK (1999) J Biomed Sci 6:213–218

    Article  CAS  PubMed  Google Scholar 

  16. Gamero AM, Larner AC (2001) J Biol Chem 276:13547–13553

    CAS  PubMed  Google Scholar 

  17. Tracey AS, Willsky GR, Takeuchi E (2007) Vanadium: chemistry, biochemistry, pharmacology and practical applications. CRC, Boca Raton

  18. Trachootham D, Alexandre J, Huang P (2009) Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  19. Thompson KH, Orvig C (2000) J Chem Soc Dalton Trans 2885–2892

  20. Yuen VG, Caravan P, Gelmini L, Glover N, McNeill JH, Setyawati IA, Zhou Y, Orvig C (1997) J Inorg Biochem 68:109–116

    Article  CAS  PubMed  Google Scholar 

  21. Crans DC (2000) J Inorg Biochem 80:123–131

    Article  CAS  PubMed  Google Scholar 

  22. Fu Y, Wang Q, Yang XG, Yang XD, Wang K (2008) J Biol Inorg Chem 13:1001–1009

    Article  CAS  PubMed  Google Scholar 

  23. Natarajan M, Mohan S, Martinez BR, Meltz ML, Herman TS (2000) Cancer Detect Prev 24:405–414

    CAS  PubMed  Google Scholar 

  24. Funk D, Schrenk H-H, Frei E (2007) Biotechniques 43:178–182

    Article  CAS  PubMed  Google Scholar 

  25. Sherr CJ (1996) Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  26. Reed SI (1997) Cancer Surv 29:7–23

    CAS  PubMed  Google Scholar 

  27. Morgan DO (1995) Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  28. Dunphy WG (1994) Trends Cell Biol 4:202–207

    Article  CAS  PubMed  Google Scholar 

  29. Garcia Z, Kumar A, Marques M, Cortes I, Carrera AC (2006) EMBO J 25:655–661

    Article  CAS  PubMed  Google Scholar 

  30. Meloche S, Pouyssegur J (2007) Oncogene 26:3227–3239

    Article  CAS  PubMed  Google Scholar 

  31. Chambard JC, Lefloch R, Pouyssegur J, Lenormand P (2007) Biochim Biophys Acta 1773:1299–1310

    Article  CAS  PubMed  Google Scholar 

  32. Jaspers I, Samet JM, Erzurum S, Reed W (2000) Am J Respir Cell Mol Biol 23:95–102

    CAS  PubMed  Google Scholar 

  33. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) FEBS Lett 358:1–3

    Article  CAS  PubMed  Google Scholar 

  34. Szatrowski TP, Nathan CF (1991) Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  35. Tamrakar S, Rubin E, Ludlow JW (2000) Front Biosci 5:D121–D137

    Article  CAS  PubMed  Google Scholar 

  36. Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, Tonks NK, Meng TC (2008) FEBS J 275:69–88

    Article  CAS  PubMed  Google Scholar 

  37. Baran Enrique J (2003) J Braz Chem Soc 14:878–888

    Google Scholar 

  38. Legrum W (1986) Toxicology 42:281–289

    Article  CAS  PubMed  Google Scholar 

  39. Crans DC, Zhang B, Gaidamauskas E, Keramidas AD, Willsky GR, Roberts CR (2010) Inorg Chem. doi:10.1021/ic100080k

  40. Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P (2007) Clin Cancer Res 13:4934–4942

    Article  CAS  PubMed  Google Scholar 

  41. Javvadi P, Segan AT, Tuttle SW, Koumenis C (2008) Mol Pharmacol 73:1491–1501

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Yi J (2008) Cancer Biol Ther 7:1875–1884

    CAS  PubMed  Google Scholar 

  43. Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) Pharm Res 21:1026–1033

    Article  CAS  PubMed  Google Scholar 

  44. Capella MA, Capella LS, Valente RC, Gefe M, Lopes AG (2007) Cell Biol Toxicol 23:413–420

    Article  CAS  PubMed  Google Scholar 

  45. Montalto G, Cervello M, Giannitrapani L, Dantona F, Terranova A, Castagnetta LA (2002) Ann N Y Acad Sci 963:13–20

    Article  PubMed  Google Scholar 

  46. Sangiovanni A, Del Ninno E, Fasani P, De Fazio C, Ronchi G, Romeo R, Morabito A, De Franchis R, Colombo M (2004) Gastroenterology 126:1005–1014

    Article  PubMed  Google Scholar 

  47. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Minguez B, Sole M, Battiston C, Van Laarhoven S, Fiel MI, Di Feo A, Hoshida Y, Yea S, Toffanin S, Ramos A, Martignetti JA, Mazzaferro V, Bruix J, Waxman S, Schwartz M, Meyerson M, Friedman SL, Llovet JM (2008) Gastroenterology 135:1972–1983

    Google Scholar 

  48. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB (2005) Gut 54:533–539

    Article  CAS  PubMed  Google Scholar 

  49. Dann SG, Selvaraj A, Thomas G (2007) Trends Mol Med 13:252–259

    Article  CAS  PubMed  Google Scholar 

  50. Thompson KH, Orvig C (2006) J Inorg Biochem 100:1925–1935

    Article  CAS  PubMed  Google Scholar 

  51. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) J Inorg Biochem 103:554–558

    Article  CAS  PubMed  Google Scholar 

  52. Sakurai H, Yoshikawa Y, Yasui H (2008) Chem Soc Rev 37:2383–2392

    Article  CAS  PubMed  Google Scholar 

  53. Faneca H, Figueiredo VA, Tomaz I, Goncalves G, Avecilla F, Pedroso de Lima MC, Geraldes CF, Pessoa JC, Castro MM (2009) J Inorg Biochem 103(4):601–608

    Article  CAS  PubMed  Google Scholar 

  54. Etcheverry SB, Ferrer EG, Naso L, Rivadeneira J, Salinas V, Williams PA (2008) J Biol Inorg Chem 13:435–447

    Article  CAS  PubMed  Google Scholar 

  55. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Endocr Rev 23:599–622

    Article  CAS  PubMed  Google Scholar 

  56. Houstis N, Rosen ED, Lander ES (2006) Nature 440:944–948

    Article  CAS  PubMed  Google Scholar 

  57. Oster MH, Llobet JM, Domingo JL, German JB, Keen CL (1993) Toxicology 83:115–130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20871008) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Liu, TT., Fu, Y. et al. Vanadium compounds discriminate hepatoma and normal hepatic cells by differential regulation of reactive oxygen species. J Biol Inorg Chem 15, 1087–1097 (2010). https://doi.org/10.1007/s00775-010-0668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0668-4

Keywords

Navigation