Skip to main content

Advertisement

Log in

The Fox1 ferroxidase of Chlamydomonas reinhardtii: a new multicopper oxidase structural paradigm

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Multicopper oxidases (MCO) contain at least four copper atoms arrayed in three distinct ligand fields supported by two canonical structural features: (1) multiples of the cupredoxin fold and (2) four unique sequence elements that include the ten histidine and one cysteine ligands to the four copper atoms. Ferroxidases are a subfamily of MCO proteins that contain residues supporting a specific reactivity towards ferrous iron; these MCOs play a vital role in iron metabolism in bacteria, algae, fungi, and mammals. In contrast to the fungal ferroxidases, e.g., Fet3p from Saccharomyces cerevisiae, the mammalian ceruloplasmin (Cp) is twice as large (six vs. three cupredoxin domains) and contains three type 1, or “blue,” copper sites. Chlamydomonas reinhardtii expresses a putative ferroxidase, Fox1, which has sequence similarity to human Cp (hCp). Eschewing the standard sequence-based modeling paradigm, we have constructed a function-based model of the Fox1 protein which replicates hCp’s six copper-site ligand arrays with an overall root mean square deviation of 1.4 Å. Analysis of this model has led also to assignment of motifs in Fox1 that are unique to ferroxidases, the strongest evidence to date that the well-characterized fungal high-affinity iron uptake system is essential to iron homeostasis in green algae. The model of Fox1 also establishes a subfamily of MCO proteins with a noncanonical copper-ligand organization. These diverse structures suggest alternative mechanisms for intramolecular electron transfer and require a new trajectory for the evolution of the MCO superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ET:

Electron transfer

hCp:

Human ceruloplasmin

MCO:

Multicopper oxidase

RMSD:

Root mean square deviation

T1:

Type 1

T2:

Type 2

T3:

Type 3

TNC:

Trinuclear cluster

References

  1. Solomon EI, Augustine AJ, Yoon J (2008) Dalton Trans 3921–3932. doi:10.1039/b800799c

  2. Ferguson-Miller S, Babcock GT (1996) Chem Rev 96:2889–2908

    Article  PubMed  CAS  Google Scholar 

  3. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  4. Stoj CS, Kosman DJ (2005) In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, New York, pp 1134–1159

  5. Kosman DJ (2008) Inorg Chim Acta 361:844–849. doi:10.1016/j.ica.2007.10.013

    Article  CAS  Google Scholar 

  6. Quintanar L, Stoj C, Taylor AB, Hart PJ, Kosman DJ, Solomon EI (2007) Acc Chem Res 40:445–452. doi:10.1021/ar600051a

    Article  PubMed  CAS  Google Scholar 

  7. Stoj CS, Augustine AJ, Zeigler L, Solomon EI, Kosman DJ (2006) Biochemistry 45:12741–12749

    Article  PubMed  CAS  Google Scholar 

  8. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomon EI (2007) Proc Natl Acad Sci USA 104:13609–13614. doi:10.1073/pnas.0705137104

    Article  PubMed  CAS  Google Scholar 

  9. Yoon J, Solomon EI (2007) J Am Chem Soc 129:13127–13136. doi:10.1021/ja073947a

    Article  PubMed  CAS  Google Scholar 

  10. Taylor AB, Stoj CS, Ziegler L, Kosman DJ, Hart PJ (2005) Proc Natl Acad Sci USA 102:15459–15464

    Article  PubMed  CAS  Google Scholar 

  11. Ellis MJ, Grossmann JG, Eady RR, Hasnain SS (2007) J Biol Inorg Chem 12:1119–1127

    Article  PubMed  CAS  Google Scholar 

  12. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) FEBS J 273:2308–2326

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura K, Go N (2005) Cell Mol Life Sci 62:2050–2066

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura K, Kawabata T, Yura K, Go N (2003) FEBS Lett 553:239–244

    Article  PubMed  CAS  Google Scholar 

  15. Murphy ME, Lindley PF, Adman ET (1997) Protein Sci 6:761–770

    Article  PubMed  CAS  Google Scholar 

  16. Adman ET (1991) Adv Protein Chem 42:145–197

    Article  PubMed  CAS  Google Scholar 

  17. Chen JC, Hsieh SI, Kropat J, Merchant SS (2008) Eukaryot Cell 7:541–545. doi:10.1128/EC.00463-07

    Article  PubMed  CAS  Google Scholar 

  18. Herbik A, Bolling C, Buckhout TJ (2002) Plant Physiol 130:2039–2048

    Article  PubMed  CAS  Google Scholar 

  19. La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Gohre V, Moseley JL, Kropat J, Merchant S (2002) Eukaryot Cell 1:736–757

    Article  PubMed  CAS  Google Scholar 

  20. Paz Y, Katz A, Pick U (2007) J Biol Chem 282:8658–8666. doi:10.1074/jbc.M609756200

    Article  PubMed  CAS  Google Scholar 

  21. Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Appl Environ Microbiol 74:1527–1534. doi:10.1128/AEM.01240-07

    Article  PubMed  CAS  Google Scholar 

  22. Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J, Sayavedra-Soto L, Arciero D, Hommes N, Whittaker M, Arp D (2003) J Bacteriol 185:2759–2773

    Article  PubMed  CAS  Google Scholar 

  23. Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM (2008) Appl Environ Microbiol 74:2646–2658. doi:10.1128/AEM.01656-07

    Article  PubMed  CAS  Google Scholar 

  24. Kosman DJ (2003) Mol Microbiol 47:1185–1197

    Article  PubMed  CAS  Google Scholar 

  25. Hellman NE, Gitlin JD (2002) Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  26. Kosman DJ (2002) Adv Protein Chem 60:221–269

    Google Scholar 

  27. Bento I, Peixoto C, Zaitsev VN, Lindley PF (2007) Acta Crystallogr D Biol Crystallogr 63:240–248. doi:10.1107/S090744490604947X

    Article  PubMed  CAS  Google Scholar 

  28. Lindley PF, Graeme C, Irina Z, Vjacheslav Z, Bengt R, Eva S-L, Kunihiro Y (1997) J Biol Inorg Chem V2:454–463

    Google Scholar 

  29. Quintanar L, Gebhard M, Wang TP, Kosman DJ, Solomon EI (2004) J Am Chem Soc 126:6579–6589

    Article  PubMed  CAS  Google Scholar 

  30. Singh A, Severance S, Kaur N, Wiltsie W, Kosman DJ (2006) J Biol Chem 281:13355–13564

    Article  PubMed  CAS  Google Scholar 

  31. Dundas J, Binkowski TA, DasGupta B, Liang J (2007) BMC Bioinformatics 8:388. doi:10.1186/1471-2105-8-388

    Article  PubMed  CAS  Google Scholar 

  32. Bjorklund AK, Ekman D, Elofsson A (2006) PLoS Comput Biol 2:e114. doi:10.1371/journal.pcbi.0020114

    Article  PubMed  CAS  Google Scholar 

  33. Weiner J, 3rd, Bornberg-Bauer E (2006) Mol Biol Evol 23:734–743. doi:10.1093/molbev/msj091

    Article  PubMed  CAS  Google Scholar 

  34. Tusnady GE, Simon I (2001) Bioinformatics 17:849–850. doi:10.1093/bioinformatics/17.9.849

    Article  PubMed  CAS  Google Scholar 

  35. von Heijne G (1992) J Mol Biol 225:487–494

    Article  Google Scholar 

  36. Zdobnov EM, Apweiler R (2001) Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  37. Edgar RC (2004) Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  38. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Proteins 23:318–326

    Article  PubMed  CAS  Google Scholar 

  39. Zaitseva I, Zaitsev V, Card G, Moshkov K, Bax V, Ralph A, Lindley P (1996) J Biol Inorg Chem 1:15–23

    Article  CAS  Google Scholar 

  40. Yoon J, Solomon EI (2005) Inorg Chem 44:8076–8086. doi:10.1021/ic0507870

    Article  PubMed  CAS  Google Scholar 

  41. Machonkin TE, Solomon EI (2000) J Am Chem Soc 122:12547–12560

    Article  CAS  Google Scholar 

  42. Onuchic JN, Beratan DN, Winkler JR, Gray HB (1992) Annu Rev Biophys Biomol Struct 21:349–377

    Article  PubMed  CAS  Google Scholar 

  43. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Proc Natl Acad Sci USA 97:12176–12181. doi:10.1073/pnas.190337797

    Article  PubMed  CAS  Google Scholar 

  44. Boulanger MJ, Murphy ME (2002) J Mol Biol 315:1111–1127. doi:10.1006/jmbi.2001.5251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant DK53820 from the National Institutes of Health of the Public Health Service of the USA (to D.J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Kosman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzulli, A.J., Kosman, D.J. The Fox1 ferroxidase of Chlamydomonas reinhardtii: a new multicopper oxidase structural paradigm. J Biol Inorg Chem 14, 315–325 (2009). https://doi.org/10.1007/s00775-008-0450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0450-z

Keywords

Navigation