Skip to main content
Log in

Identification and characterization of the low molecular mass ferredoxins involved in central metabolism in Heliomicrobium modesticaldum

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The homodimeric Type I reaction center (RC) from Heliomicrobium modesticaldum lacks the PsaC subunit found in Photosystem I and instead uses the interpolypeptide [4Fe–4S] cluster FX as the terminal electron acceptor. Our goal was to identify which of the small mobile dicluster ferredoxins encoded by the H. modesticaldum genome are capable of accepting electrons from the heliobacterial RC (HbRC) and pyruvate:ferredoxin oxidoreductase (PFOR), a key metabolic enzyme. Analysis of the genome revealed seven candidates: HM1_1462 (PshB1), HM1_1461 (PshB2), HM1_2505 (Fdx3), HM1_0869 (FdxB), HM1_1043, HM1_0357, and HM1_2767. Heterologous expression in Escherichia coli and studies using time-resolved optical spectroscopy revealed that only PshB1, PshB2, and Fdx3 are capable of accepting electrons from the HbRC and PFOR. Modeling studies using AlphaFold show that only PshB1, PshB2, and Fdx3 should be capable of docking on PFOR at a positively charged patch that overlays a surface-proximal [4Fe–4S] cluster. Proteomic analysis of wild-type and gene deletion strains ΔpshB1, ΔpshB2, ΔpshB1pshB2, and Δfdx3 grown under nitrogen-replete conditions revealed that Fdx3 is undetectable in the wild-type, ΔpshB1, and Δfdx3 strains, but it is present in the ΔpshB2 and ΔpshB1pshB2 strains, implying that Fdx3 may substitute for PshB2. When grown under nitrogen-deplete conditions, Fdx3 is present in the wild-type and all deletion strains except for Δfdx3. None of the knockout strains demonstrated significant impairment during chemotrophic dark growth on pyruvate, photoheterotrophic light growth on pyruvate, or phototrophic growth on acetate+CO2, indicating a high degree of redundancy among these three electron transfer proteins. Loss of both PshB1 and PshB2, but not FdxB, resulted in poor growth under N2-fixing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antonkine ML, Golbeck JH (2006) Molecular interactions of the stromal subunit PsaC with the PsaA/PsaB heterodimer. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, Dordrecht, pp 79–98

    Chapter  Google Scholar 

  • Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the heliobacteria. Photosynth Res 104(2–3):103–111

    Article  CAS  PubMed  Google Scholar 

  • Baker PL, Orf GS, Khan Z, Espinoza L, Leung S, Kevershan K, Redding KE (2019) A molecular biology tool kit for the phototrophic firmicute Heliobacterium modesticaldum. Appl Environ Microbiol 85(19):e01287–e1319

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Baur JR, Graves MC, Feinberg BA, Ragsdale SW (1990) Characterization of the recombinant Clostridium pasteurianum ferredoxin and comparison of its properties with those of the native protein. BioFactors (Oxford, England) 2(3):197–203

    CAS  PubMed  Google Scholar 

  • Beinert H (1983) Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem 131(2):373–378

    Article  CAS  PubMed  Google Scholar 

  • Bern M, Kil YJ, Becker C (2012) Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics 13:13.20.1-13.20.14

    Google Scholar 

  • Brockmann H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136(1):17–19

    Article  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA, Madigan MT (1999) Heliorestis daurensis, gen. nov. sp. nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a Siberian soda lake. Arch Microbiol 172(3):167–174

    Article  CAS  PubMed  Google Scholar 

  • Cardona T (2015) A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth Res 126(1):111–134

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Cavazza C, Contreras-Martel C, Pieulle L, Chabrière E, Hatchikian EC, Fontecilla-Camps JC (2006) Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate. Structure 14(2):217–224

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Quintana A, Leibl W, Bottin H, Sétif P (1998) Electron transfer in photosystem I reaction centers follows a linear pathway in which iron-sulfur cluster FB is the immediate electron donor to soluble ferredoxin. Biochemistry 37(10):3429–3439

    Article  PubMed  Google Scholar 

  • Ferlez B, Cowgill J, Dong W, Gisriel C, Lin S, Flores M, Walters K, Cetnar D, Redding KE, Golbeck JH (2016) Thermodynamics of the electron acceptors in Heliobacterium modesticaldum: an exemplar of an early homodimeric type I photosynthetic reaction center. Biochemistry 55(16):2358–2370

    Article  CAS  PubMed  Google Scholar 

  • Fixen KR, Pal Chowdhury N, Martinez-Perez M, Poudel S, Boyd ES, Harwood CS (2018) The path of electron transfer to nitrogenase in a phototrophic alpha-proteobacterium. Environ Microbiol 20(7):2500–2508

    Article  CAS  PubMed  Google Scholar 

  • Gisriel C, Sarrou I, Ferlez B, Golbeck JH, Redding KE, Fromme R (2017) Structure of a symmetric photosynthetic reaction center–photosystem. Science (new York, NY) 357(6355):1021–1025

    Article  ADS  CAS  Google Scholar 

  • Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27(1):14–25

    Article  CAS  PubMed  Google Scholar 

  • Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90(5):1642–1646

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Golbeck JH, van der Est A (2022) EPR of Type I photosynthetic reaction centers. Methods Enzymol 666:413–450

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Moreno C, Martínez-Júlvez M, Medina M, Hurley JK, Tollin G (1998) Protein-protein interaction in electron transfer reactions: the ferrodoxin/flavodoxin/ferredoxin:NADP+ reductase system from Anabaena. Biochimie 80(10):837–846

    Article  PubMed  Google Scholar 

  • Hatano A, Seo D, Kitashima M, Sakurai H, Inoue K (2005) Purification of two ferredoxins and cloning of these genes from the photosynthetic bacterium Heliobacillus mobilis. In: van der Est A, Bruce D (eds) 13th international congress on photosynthesis. Allen Press Inc., Lawrence, KS, pp 83–85

    Google Scholar 

  • Heathcote P, Jones MR, Fyfe PK (2003) Type I photosynthetic reaction centres: structure and function. Philos Trans R Soc Lond B Biol Sci 358(1429):231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippler M, Nelson N (2021) The plasticity of photosystem I. Plant Cell Physiol 62(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Hong JS, Rabinowitz JC (1970) Molar extinction coefficient and iron and sulfide content of Clostridial ferredoxin. J Biol Chem 245(19):4982–4987

    Article  CAS  PubMed  Google Scholar 

  • Jagannathan B, Golbeck JH (2008) Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron–sulfur clusters in green sulfur bacteria. Biochim Biophys Acta Bioenerg 1777(12):1535–1544

    Article  CAS  Google Scholar 

  • Jagannathan B, Shen G, Golbeck JH (2012) The evolution of Type I reaction centers: the response to oxygenic photosynthesis. In: Burnap R, Vermaas W (eds) Functional genomics and evolution of photosynthetic systems. Springer, Dordrecht, pp 285–316

    Chapter  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MC, Kent T, Emptage M, Merkle H, Beinert H, Münck E (1984) Evidence for the formation of a linear [3Fe–4S] cluster in partially unfolded aconitase. J Biol Chem 259(23):14463–14471

    Article  PubMed  Google Scholar 

  • Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115(1):51–55

    Article  CAS  PubMed  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163(4):259–267

    Article  CAS  Google Scholar 

  • Kleinherenbrink FAM, Amesz J (1993) Stoichiometries and rates of electron transfer and charge recombination in Heliobacterium chlorum. Biochim Biophys Acta Bioenerg 1143(1):77–83

    Article  CAS  Google Scholar 

  • Leung SW, Baker PL, Redding KE (2021) Deletion of the cytochrome bc complex from Heliobacterium modesticaldum results in viable but non-phototrophic cells. Photosynth Res 148(3):137–152

    Article  CAS  PubMed  Google Scholar 

  • Moser CC, Page CC, Cogdell RJ, Barber J, Wraight CA, Dutton PL (2003) Length, time, and energy scales of photosystems. Adv Protein Chem 63:71–109

    Article  CAS  PubMed  Google Scholar 

  • Nelson N (2013) Evolution of photosystem I and the control of global enthalpy in an oxidizing world. Photosynth Res 116(2–3):145–151

    Article  CAS  PubMed  Google Scholar 

  • Orf GS, Redding KE (2019) Expression and purification of affinity-tagged variants of the photochemical reaction center from Heliobacterium modesticaldum. Photosynth Res 142(3):335–348

    Article  CAS  PubMed  Google Scholar 

  • Orf GS, Redding KE (2021) Photosynthesis | The heliobacteria. In: Jez J (ed) Encyclopedia of biological chemistry III (third edition). Elsevier, Oxford, pp 352–364

    Chapter  Google Scholar 

  • Orf GS, Gisriel C, Redding KE (2018) Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. Photosynth Res 138(1):11–37

    Article  CAS  PubMed  Google Scholar 

  • Orf GS, Gisriel CJ, Granstrom J, Baker PL, Redding KE (2022) The PshX subunit of the photochemical reaction center from Heliobacterium modesticaldum acts as a low-energy antenna. Photosynth Res 151(1):11–30

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30(1):70–82

    Article  CAS  PubMed  Google Scholar 

  • Pierella Karlusich JJ, Carrillo N (2017) Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP+ oxidoreductase. Photosyn Res 134:235–250

    Article  CAS  Google Scholar 

  • Prince RC, Gest H, Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta Bioenerg 810(3):377–384

    Article  CAS  Google Scholar 

  • Richard E, Michael ON, Alexander P, Natasha A, Andrew S, Tim G, Augustin Ž, Russ B, Sam B, Jason Y, Olaf R, Sebastian B, Michal Z, Alex B, Anna P, Andrew C, Kathryn T, Rishub J, Ellen C, Pushmeet K, John J, Demis H (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021.10.04.463034. https://www.biorxiv.org/content/10.1101/2021.10.04.463034v2

  • Romberger SP, Golbeck JH (2012) The FX iron-sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers. Photosynth Res 111(3):285–290

    Article  CAS  PubMed  Google Scholar 

  • Romberger SP, Castro C, Sun Y, Golbeck JH (2010) Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum. Photosynth Res 104(2):293–303

    Article  CAS  PubMed  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett 586(5):603–616

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Chen M, Blankenship RE, Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190(13):4687–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattley WM, Asao M, Tang JK-H, Collins AM (2014) Energy conservation in heliobacteria: photosynthesis and central carbon metabolism. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Springer, Dordrecht, pp 231–247

    Chapter  Google Scholar 

  • Sheehy D, Kuang Lu Y, Osman F, Alattar Z, Flores C, Sussman H, Zaare S, Dooling M, Meraban A, Baker P (2018) Genome-wide transcriptional response during the shift to N2-fixing conditions in Heliobacterium modesticaldum. J Proteom Bioinform 11(8):143–160

    Article  Google Scholar 

  • Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA, Golbeck JH (2002) Assembly of Photosystem I: II. Rubredoxin is required for the in vivo sssembly of FX in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277(23):20355–20366

    Article  CAS  PubMed  Google Scholar 

  • Sobel BE, Lovenberg W (1966) Characteristics of Clostridium pasteurianum ferredoxin in oxidation-reduction reactions. Biochemistry 5(1):6–13

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AP, Hardy EP, Allen JP, Vaccaro BJ, Johnson MK, Knaff DB (2017) Identification of the ferredoxin-binding site of a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 56(41):5582–5592

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Feng X, Zhuang WQ, Alvarez-Cohen L, Blankenship RE, Tang YJ (2010a) Carbon flow of heliobacteria is related more to clostridia than to the green sulfur bacteria. J Biol Chem 285(45):35104–35112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K-H, Yue H, Blankenship RE (2010b) Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 10(1):150

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassiliev IR, Antonkine ML, Golbeck JH (2001) Iron–sulfur clusters in type I reaction centers. Biochim Biophys Acta Bioenerg 1507(1):139–160

    Article  CAS  Google Scholar 

  • Walters KA, Golbeck JH (2020) Designing a modified clostridial 2[4Fe–4S] ferredoxin as a redox coupler to directly link photosystem I with a Pt nanoparticle. Photosynth Res 143(2):165–181

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chitnis PR (1995) Organization of photosystem I polypeptides: identification of PsaB domains that may interact with PsaD. Plant Physiol 108(3):1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Patricia Baker for technical assistance with construction of the gene knockouts and growth studies.

Funding

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0010575.

Author information

Authors and Affiliations

Authors

Contributions

JG, KM, and KR wrote the main manuscript text and jointly prepared the figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Kevin E. Redding or John H. Golbeck.

Ethics declarations

Conflict of interest

The authors have no financial interests that are either directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2231 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walters, K.A., Redding, K.E. & Golbeck, J.H. Identification and characterization of the low molecular mass ferredoxins involved in central metabolism in Heliomicrobium modesticaldum. Photosynth Res (2024). https://doi.org/10.1007/s11120-023-01069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11120-023-01069-z

Keywords

Navigation