Skip to main content
Log in

Genomic analysis reveals widespread occurrence of new classes of copper nitrite reductases

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Recently, the structure of a Cu-containing nitrite reductase (NiR) from Hyphomicrobium denitrificans (HdNiR) has been reported, establishing the existence of a new family of Cu-NiR where an additional type 1 Cu (T1Cu) containing cupredoxin domain is located at the N-terminus (Nojiri et al. in Proc. Natl. Acad. Sci. USA 104:4315–4320, 2007). HdNiR retains the well-characterised coupled T1Cu–type 2 Cu (T2Cu) core, where the T2Cu catalytic site is also built utilising ligands from neighbouring monomers. We have undertaken a genome analysis and found the wide occurrence of these NiRs, with members clustering in two groups, one showing an amino acid sequence similarity of around 80% with HdNiR, and a second group, including the NiR from the extremophile Acidothermus cellulolyticus, clustering around 50% similarity to HdNiR. This is reminiscent of the difference observed between the blue (Alcaligenes xylosoxidans) and green (Achromobacter cycloclastes and Alcaligenes faecalis) NiRs which have been extensively studied and may indicate that these also form two distinct subclasses of the new family. Genome analysis also showed the presence of Cu-NiRs with a C-terminal extension of 160–190 residues containing a class I cytochrome c domain with a characteristic β-sheet extension. Currently no structural information exists for any member of this family. Genome analysis suggests the widespread occurrence of these novel NiRs with representatives in the α, β and γ subclasses of the Proteobacteria and in two species of the fungus Aspergillus. We selected the enzyme from Ralstonia pickettii for comparative modelling and produced a plausible structure highlighting an electron transfer mode in which the cytochrome c haem at the C-terminus can come within 16-Å reach of the T1Cu centre of the T1Cu–T2Cu core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The nomenclature for abbreviating different NiRs follows the binomial convention in which the first letter (in capital) signifies the genus and second letter denotes the species, e.g. Achromobacter cycloclastes NiR becomes AcNiR. If the abbreviation is ambiguous then the second letter of the species is added, e.g. AceNiR for Acidothermus cellulolyticus NiR.

  2. Ralstonia pickettii is a nonfermenting gram-negative bacillus of relatively low virulence that is often associated with pseudobacteremia or asymptomatic colonisation of patients. Contamination of water supplies, skin disinfectants, and saline solutions used either for patient care or for laboratory diagnosis has previously been incriminated. Ralstonia pickettii is resistant to some antiseptics and is able to survive in an oligotrophic environment [10, 11].

Abbreviations

AceNiR:

Acidothermus cellulolyticus nitrite reductase

AcNiR:

Achromobacter cycloclastes nitrite reductase

AfNiR:

Alcaligenes faecalis S6 nitrite reductase

AxNiR:

Alcaligenes xylosoxidans nitrite reductase

BbNiR:

Bdellovibrio bacteriovorus nitrite reductase

BCP:

Blue copper protein

CgNiR:

Chaetomium globosum nitrite reductase

CvNiR:

Chromobacterium violaceum nitrite reductase

HdNiR:

Hyphomicrobium denitrificans nitrite reductase

NgNiR:

Neisseria gonorrhoeae nitrite reductase

NiR:

Nitrite reductase

PHYRE:

Protein Homology/analogY Recognition Engine

RpNiR:

Ralstonia pickettii 12J nitrite reductase

T1Cu:

Type 1 copper

T2Cu:

Type 2 copper

References

  1. Nojiri M, Xie Y, Inoue T, Yamamoto T, Matsumura H, Kataoka K, Deligeer, Yamaguchi K, Kai Y, Suzuki S (2007) Proc Natl Acad Sci USA 104:4315–4320

    Article  PubMed  CAS  Google Scholar 

  2. Eady RR, Hasnain SS (2003) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II. Elsevier, Oxford, pp 759–786

    Google Scholar 

  3. Antonyuk S, Strange RW, Sawers G, Eady RR, Hasnain SS (2005) Proc Natl Acad Sci USA 102:12041–12046

    Article  PubMed  CAS  Google Scholar 

  4. Boulanger MJ, Murphy MEP (2002) J Mol Biol 315:1111–1127

    Article  PubMed  CAS  Google Scholar 

  5. Ellis MJ, Dodd FE, Sawers G, Eady RR, Hasnain SS (2003) J Mol Biol 328:429–438

    Article  PubMed  CAS  Google Scholar 

  6. Murphy MEP, Turley S, Kukimoto M, Nishiyama M, Horinouchi S, Sasaki H, Tanokura M, Adman ET (1995) Biochemistry 34:12107–12117

    Article  PubMed  CAS  Google Scholar 

  7. Pinho D, Besson S, Brondino CD, De Castro B, Moura I (2004) Eur J Biochem 271:2361–2369

    Article  PubMed  CAS  Google Scholar 

  8. Zumft WG, Gotzmann DJ, Kroneck PM (1987) Eur J Biochem 168:301–307

    Article  PubMed  CAS  Google Scholar 

  9. Bertini I, Cavallaro G, Rosato A (2006) Chem Rev 106:90–115

    Article  PubMed  CAS  Google Scholar 

  10. Barbut F, Kosmann MJ, Lalande V, Neyme D, Coppo P, Gorin NC (2006) Infect Control Hosp Epidemiol 27:642–644

    Article  PubMed  CAS  Google Scholar 

  11. Ryan MP, Pembroke JT, Adley CC (2006) J Hosp Infect 62:278–284

    Article  PubMed  CAS  Google Scholar 

  12. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  13. Pearson WR (1990) Methods Enzymol 183:63–98

    Article  PubMed  CAS  Google Scholar 

  14. Pearson WR, Lipman DJ (1988) Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  15. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  16. Rice P, Longden I, Bleasby A (2000) Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  17. Kelley LA, Maccallum RM, Sternberg MJ (2000) J Mol Biol 299:499–520

    Article  PubMed  CAS  Google Scholar 

  18. Jacobson F, Guo H, Olesen K, Okvist M, Neutze R, Sjolin L (2005) Acta Crystallogr D Biol Crystallogr 61:1190–1198

    Article  PubMed  CAS  Google Scholar 

  19. Than ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T (1997) J Mol Biol 271:629–644

    Article  PubMed  CAS  Google Scholar 

  20. Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, Wood SP, Anthony C, Cooper JB (2006) J Mol Biol 357:151–162

    Article  PubMed  CAS  Google Scholar 

  21. Muresanu L, Pristovsek P, Lohr F, Maneg O, Mukrasch MD, Ruterjans H, Ludwig B, Lucke C (2006) J Biol Chem 281:14503–14513

    Article  PubMed  CAS  Google Scholar 

  22. Chen L, Durley RC, Mathews FS, Davidson VL (1994) Science 264:86–90

    Article  PubMed  CAS  Google Scholar 

  23. Chen R, Li L, Weng Z (2003) Proteins 52:80–87

    Article  PubMed  CAS  Google Scholar 

  24. Sippl MJ (1993) Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  25. Wiederstein M, Sippl MJ (2007) Nucleic Acids Res 35:W407–W410

    Google Scholar 

  26. Karlin KD, Zhu ZY, Karlin S (1998) J Biol Inorg Chem 3:172–187

    Article  CAS  Google Scholar 

  27. Karlin S, Zhu ZY, Karlin KD (1997) Proc Natl Acad Sci USA 94:14225–14230

    Article  PubMed  CAS  Google Scholar 

  28. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG (2003) J Clin Microbiol 41:2068–2079

    Article  PubMed  CAS  Google Scholar 

  29. Chen ZW, Matsushita K, Yamashita T, Fujii TA, Toyama H, Adachi O, Bellamy HD, Mathews FS (2002) Structure 10:837–849

    Article  PubMed  CAS  Google Scholar 

  30. Oubrie A, Rozeboom HJ, Kalk KH, Huizinga EG, Dijkstra BW (2002) J Biol Chem 277:3727–3732

    Article  PubMed  CAS  Google Scholar 

  31. Simon J, Einsle O, Kroneck PM, Zumft WG (2004) FEBS Lett 569:7–12

    Article  PubMed  CAS  Google Scholar 

  32. Gon S, Giudici-Orticoni MT, Mejean V, Iobbi-Nivol C (2001) J Biol Chem 276:11545–11551

    Article  PubMed  CAS  Google Scholar 

  33. Kanbi LD, Antonyuk SV, Hough MA, Hall JF, Dodd FE, Hasnain SS (2002) J Mol Biol 320:263–275

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura K, Go N (2005) Cell Mol Life Sci 62:2050–2066

    Google Scholar 

  35. Nakamura K, Kawabata T, Yura K, Go N (2003) FEBS Lett 553:239–244

    Article  PubMed  CAS  Google Scholar 

  36. Delano WL (2002) http://www.pymol.org

Download references

Acknowledgements

We would like to thank Michael Hough for his assistance with the theoretical docking program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samar Hasnain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_282_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, M.J., Grossmann, J.G., Eady, R.R. et al. Genomic analysis reveals widespread occurrence of new classes of copper nitrite reductases. J Biol Inorg Chem 12, 1119–1127 (2007). https://doi.org/10.1007/s00775-007-0282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0282-2

Keywords

Navigation