Skip to main content
Log in

Theoretical study of the hydroxylation of phenols mediated by an end-on bound superoxo–copper(II) complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Peptidylglycine α-amidating monooxygenase and dopamine β-monooxygenase are copper-containing proteins which catalyze essential hydroxylation reactions in biological systems. There are several possible mechanisms for the reductive O2-activation at their mononuclear copper active site. Recently, Karlin and coworkers reported on the reactivity of a copper(II)–superoxo complex which is capable of inducing the hydroxylation of phenols with incorporated oxygen atoms derived from the Cu(II)-O2 ·− moiety. In the present work the reaction mechanism for the abovementioned superoxo complex with phenols is studied. The pathways found are analyzed with the aim of providing some insight into the nature of the chemical and biological copper-promoted oxidative processes with 1:1 Cu(I)/O2-derived species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Scheme 5
Scheme 6
Fig. 6
Fig. 7
Scheme 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klinman JP (2006) J Biol Chem 281:3013–3016

    Article  PubMed  CAS  Google Scholar 

  2. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867

    Article  PubMed  CAS  Google Scholar 

  3. Klinman JP (1996) Chem Rev 96:2541–2561

    Article  PubMed  CAS  Google Scholar 

  4. Holcrow M (2004) In: Que LJ, Tolman W (eds) Comprehensive coordination chemistry, vol II. Elsevier, Amsterdam, pp 395–436

  5. Itoh S (2006) Curr Opin Chem Biol 10:115–122

    Article  PubMed  CAS  Google Scholar 

  6. Chen P, Bell J, Eipper BA, Solomon EI (2004) Biochemistry 43:5735–5747

    Article  PubMed  CAS  Google Scholar 

  7. Evans JP, Ahn K, Klinman JP (2003) J Biol Chem 278:49691–49698

    Article  PubMed  CAS  Google Scholar 

  8. Francisco WA, Wille G, Smith AJ, Merkler DJ, Klinman JP (2004) J Am Chem Soc 126:13168–13169

    Article  PubMed  CAS  Google Scholar 

  9. Chen P, Solomon EI (2004) Proc Natl Acad Sci USA 101:13105–13110

    Article  PubMed  CAS  Google Scholar 

  10. Chen P, Solomon EI (2004) J Am Chem Soc 126:4991–5000

    Article  PubMed  CAS  Google Scholar 

  11. Kamachi T, Kihara N, Shiota Y, Yoshizawa K (2005) Inorg Chem 44:4226–4236

    Article  PubMed  CAS  Google Scholar 

  12. de la Lande A, Parisel O, Gerard H, Moliner V, Reinaud O (2008) Chem Eur J 14:6465–6473

    Article  Google Scholar 

  13. de la Lande A, Gerard H, Parisel O (2008) Int J Quantum Chem 108:1898–1904

    Article  Google Scholar 

  14. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    Article  PubMed  CAS  Google Scholar 

  15. Lewis EA, Tolman WB (2004) Chem Rev 104:1047–1076

    Article  PubMed  CAS  Google Scholar 

  16. Maiti D, Lee DH, Gaoutchenova K, Wurtele C, Holthausen MC, Sarjeant AAN, Sundermeyer J, Schindler S, Karlin KD (2008) Angew Chem Int Ed 47:82–85

    Article  CAS  Google Scholar 

  17. Maiti D, Lucas HR, Sarjeant AAN, Karlin KD (2007) J Am Chem Soc 129:6998–6999

    Article  PubMed  CAS  Google Scholar 

  18. Maiti D, Sarjeant AAN, Karlin KD (2007) J Am Chem Soc 129:6720–6721

    Article  PubMed  CAS  Google Scholar 

  19. Maiti D, Fry HC, Woertink JS, Vance MA, Solomon EI, Karlin KD (2007) J Am Chem Soc 129:264–265

    Article  PubMed  CAS  Google Scholar 

  20. Fujii T, Yamaguchi S, Hirota S, Masuda H (2008) Dalton Trans 7:164–170

    Article  Google Scholar 

  21. Fujii T, Naito A, Yamaguchi S, Funahashi Y, Jitsukawa K, Masuda H, Wada A (2003) J Inorg Biochem 96:134

    Google Scholar 

  22. Rolff M, Tuczek F (2008) Angew Chem Int Ed 47:2344–2347

    Article  CAS  Google Scholar 

  23. Cramer CJ, Tolman WB (2007) Acc Chem Res 40:601–608

    Article  PubMed  CAS  Google Scholar 

  24. Fujii T, Yamaguchi S, Funahashi Y, Ozawa T, Tosha T, Kitagawa T, Masuda H (2006) Chem Commun 13:4428–4430

    Article  Google Scholar 

  25. Wurtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Angew Chem Int Ed 45:3867–3869

    Article  Google Scholar 

  26. Gherman BF, Heppner DE, Tolman WB, Cramer CJ (2006) J Biol Inorg Chem 11:197–205

    Article  PubMed  CAS  Google Scholar 

  27. Zombeck A, Drago RS, Corden BB, Gaul JH (1981) J Am Chem Soc 103:7580–7585

    Article  CAS  Google Scholar 

  28. Deng YP, Busch DH (1995) Inorg Chem 34:6380–6386

    Article  CAS  Google Scholar 

  29. Musie GT, Wei M, Subramaniam B, Busch DH (2001) Inorg Chem 40:3336–3341

    Article  PubMed  CAS  Google Scholar 

  30. Bakac A (2006) Coord Chem Rev 250:2046–2058

    Article  CAS  Google Scholar 

  31. Gupta M, Upadhyay SK, Sridhar MA, Mathur P (2006) Inorg Chim Acta 359:4360–4366

    Article  CAS  Google Scholar 

  32. Fecenko CJ, Meyer TJ, Thorp HH (2006) J Am Chem Soc 128:11020–11021

    Article  PubMed  CAS  Google Scholar 

  33. Sun HJ, Harms K, Sundermeyer J (2004) J Am Chem Soc 126:9550–9551

    Article  PubMed  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Schrödinger (2003) Jaguar 5.5. Schrödinger, Portland

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Pittsburgh

  39. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  40. Woon DE, Dunning TH (1994) J Chem Phys 100:2975–2988

    Article  CAS  Google Scholar 

  41. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA, Honig B (1994) J Am Chem Soc 116:11875–11882

    Article  CAS  Google Scholar 

  42. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788

    Article  CAS  Google Scholar 

  43. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  44. Siegbahn PEM, Blomberg MRA (1999) Ann Rev Phys Chem 50:221–249

    Article  CAS  Google Scholar 

  45. Harvey JN (2004) Struct Bonding 112:151–183

    CAS  Google Scholar 

  46. Salomon O, Reiher M, Hess BA (2002) J Chem Phys 117:4729–4737

    Article  CAS  Google Scholar 

  47. Güell M, Luis JM, Solà M, Swart M (2008) J Phys Chem A 112:6384–6391

    Article  PubMed  Google Scholar 

  48. Swart M, Groenhof AR, Ehlers AW, Lammertsma K (2004) J Phys Chem A 108:5479–5483

    Article  CAS  Google Scholar 

  49. Groenhof AR, Ehlers AW, Lammertsma K (2007) J Am Chem Soc 129:6204–6209

    Article  PubMed  CAS  Google Scholar 

  50. Derat E, Kumar D, Neumann R, Shaik S (2006) Inorg Chem 45:8655–8663

    Article  PubMed  CAS  Google Scholar 

  51. Liao M-S, Watts JD, Huang M-J (2007) J Phys Chem A 111:5927–5935

    Article  PubMed  CAS  Google Scholar 

  52. Liao M-S, Watts JD, Huang M-J (2006) J Comput Chem 27:1577–1592

    Article  PubMed  CAS  Google Scholar 

  53. Conradie J, Ghosh A (2007) J Phys Chem B 111:12621–12624

    Article  PubMed  CAS  Google Scholar 

  54. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  55. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    CAS  Google Scholar 

  56. Krygowski TM, Cyrański MK (2001) Chem Rev 101:1385–1419

    Article  PubMed  CAS  Google Scholar 

  57. PvR Schleyer (2001) Chem Rev 101:1115–1118

    Article  Google Scholar 

  58. PvR Schleyer, Maerker C, Dransfeld A, Jiao H, Eikema Hommes NJR (1996) J Am Chem Soc 118:6317–6318

    Article  Google Scholar 

  59. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  60. Lazzeretti P (2000) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy. Elsevier, Amsterdam, pp 1–88

  61. Lazzeretti P (2004) Phys Chem Chem Phys 6:217–223

    Article  CAS  Google Scholar 

  62. Aihara J (2002) Chem Phys Lett 365:34–39

    Article  CAS  Google Scholar 

  63. PvR Schleyer, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Eikema Hommes NJR (2001) Org Lett 3:2465–2468

    Article  Google Scholar 

  64. Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  65. Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S (2004) Angew Chem Int Ed 43:4360–4363

    Article  CAS  Google Scholar 

  66. Cramer CJ, Tolman WB, Theopold KH, Rheingold AL (2003) Proc Natl Acad Sci USA 100:3635–3640

    Article  PubMed  CAS  Google Scholar 

  67. Pate JE, Cruse RW, Karlin KD, Solomon EI (1987) J Am Chem Soc 109:2624–2630

    Article  CAS  Google Scholar 

  68. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  69. Gherman BF, Cramer CJ (2007) Chem Soc Rev. doi:10.1016/j.ccr.2007.11.018

  70. Poater J, Bickelhaupt FM, Solà M (2007) J Phys Chem A 111:5063–5070

    Article  PubMed  CAS  Google Scholar 

  71. Kinsinger CR, Gherman BF, Gagliardi L, Cramer CJ (2005) J Biol Inorg Chem 10:778–789

    Article  PubMed  CAS  Google Scholar 

  72. Lanci MP, Smirnov VV, Cramer CJ, Gauchenova EV, Sundermeyer J, Roth JP (2007) J Am Chem Soc 129:14697–14709

    Article  PubMed  CAS  Google Scholar 

  73. Cramer CJ, Gour JR, Kinal A, Wtoch M, Piecuch P, Shahi ARM, Gagliardi L (2008) J Phys Chem A 112:3754–3767

    Article  PubMed  CAS  Google Scholar 

  74. Deeth RJ, Bugg TDH (2003) J Biol Inorg Chem 8:409–418

    PubMed  CAS  Google Scholar 

  75. Borowski T, Georgiev V, Siegbahn PEM (2005) J Am Chem Soc 127:17303–17314

    Article  PubMed  CAS  Google Scholar 

  76. Borowski T, Bassan A, Siegbahn PEM (2004) Inorg Chem 43:3277–3291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial help was furnished by the Spanish Ministerio de Educación y Ciencia (MEC) projects no. CTQ2005-08797-C02-01/BQU and CTQ2008-03077/BQU and by the Catalan Department d’Universitats, Recerca i Societat de la Informació (DURSI) of the Generalitat de Catalunya project no. 2005SGR-00238. We thank Marcel Swart for valuable discussions and the reviewers for helpful comments. M.G. thanks the Spanish MEC for a Ph.D. grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Per E. M. Siegbahn or Miquel Solà.

Electronic supplementary material

Molecular orbitals of the uB3LYP/lacvp optimized triplet electronic state for the complex studied, optimized Cartesian xyz coordinates, and spin density populations for the atoms of all stationary points located on the potential energy surface for the reaction mechanism studied at the B3LYP/lacvp level of theory, together with the OPBE energies for structures 1, TS12, 2, and 3 obtained at the OPBE/cc-pvTZ(-f)&lacv3p+//B3LYP/lacvp level of theory.

Supplementary Tables (PDF 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güell, M., Luis, J.M., Siegbahn, P.E.M. et al. Theoretical study of the hydroxylation of phenols mediated by an end-on bound superoxo–copper(II) complex. J Biol Inorg Chem 14, 273–285 (2009). https://doi.org/10.1007/s00775-008-0447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0447-7

Keywords

Navigation